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Abstract—Information-theoretic community discovery method
(popularly known as Infomap) is known for delivering better
quality results in the Lancichinetti–Fortunato–Radicchi (LFR)
benchmark compared to modularity-based algorithms. Parallel
algorithms have been developed for Infomap due to the compu-
tational challenge of analyzing massive graphs resulting from the
tremendous growth of information in bio-sciences, social sciences,
business, and other domains. The state-of-the-art techniques on
information-theoretic community discovery use hash tables for
storing vertex neighborhood flow information, which can be
computationally expensive due to collision handling operations
and CPU branch mispredictions. The Accelerated Sparse Accu-
mulation (ASA) hardware accelerator for hash accumulation has
been developed recently for sparse matrix-matrix multiplication
(SpGEMM). We generalize the interface of the ASA accelerator
and demonstrate that for state-of-the-art parallel Infomap, the
accelerator for hash accumulation with fast on-chip memory can
overcome the performance bottlenecks of software hash tables
and can achieve a speedup of 5.56× while reducing the number
of branch mispredictions by 59%, the CPI rate by 21%, and the
total number of instructions by 24%.

Keywords—Infomap, Community Discovery, Accelerator, Hash
Accumulation, Sparse Graphs

I. INTRODUCTION

Community discovery is a widely used application for
grouping or clustering entities of similar categories [9], [12],
[16], [17], [24], [25], [27], [28], [30], [33]. Some examples
include finding groups of people having similar interests in
social networks, marketing products to groups of consumers
based on their categories, clustering similar kinds of proteins
and recognizing the functionality of unknown proteins, web
spam detection in the cyber-security domain, and so on.
The tremendous growth of social, biological, professional,
and traffic networks in recent years has contributed to the
trend of research for parallel algorithm designs for com-
munity discovery [3]–[5], [13], [26], [29], [35], [37], [40],
[41]. Discovering communities using an information-theoretic
approach, popularly known as Infomap [33], has been found
to deliver better quality of the discovered communities by
separate studies [1], [18] and experimental (LFR) benchmark
[19]. Infomap does not have the resolution limit problem
[15] present in modularity-based algorithms [9]. There are
several shared-memory and distributed memory-based parallel
algorithms developed for Infomap [4], [5], [13], [14], [40].

The work [14] designed a parallel Infomap, combining
both shared memory and distributed memory parallelism. The
implementation achieved a 25× speedup compared to the

sequential version of Infomap [33]. A crucial step to decide
the community membership of a vertex is to compute and
accumulate information about the neighboring vertices. All of
the sequential [33] or parallel implementations [4], [5], [13],
[14] of Infomap use software hash tables to store the informa-
tion about the neighboring vertices. We will demonstrate in a
later section that the software hash accumulation takes up to
50−65% of the total execution time and a major performance
bottleneck in hardware resource utilization (i.e., stalls due to
branch misprediction).

We demonstrate that an accelerator for hash accumulation
with fast content addressable memory (CAM) can address
the challenges in the software hash table and close the gap
between achievable and utilized hardware resources. To the
best of our knowledge, none of the existing works [4], [5],
[13], [14], [33], [40], [41] on Infomap community detection
have considered hardware acceleration to speed up hash op-
erations. Chao et al. [42] proposed an accelerator for hash
accumulation (ASA) designed for the SpGEMM computation.
In this paper, we generalize the interface of ASA [42] outside
of its’ original SpGEMM formulation such that any application
with a high volume of hash lookup and accumulation can
benefit from ASA. To demonstrate that, we are augmenting the
parallel Infomap [14] implementation with ASA-accelerated
hashing operations and show that the hash operations achieve
3.28×−5.56× speedups by using ASA. The limited capacity
of the CAM can be a concern for storing hash tables for
large networks. However, real-world social and metagenome
networks exhibit the power-law degree distributions and are
sparse as we show in Figure 4 in Section IV for social
networks. Applications for metagenome assembly [23] or
clustering of similar kinds of protein sequences [22] deal with
similar kinds of networks. We demonstrate in Section IV that
the limited capacity of the accelerator’s memory is not an issue
in processing the sparse networks, as 99% of the adjacency list
(vertex neighbors) fits entirely within a CAM size of 8KB.
We summarize the contributions of our work as follows:

• We generalize the ASA interface for accelerating
SpGEMM computation by Chao et al. [42] and demon-
strate the applicability for an application with a high
volume of hash operations. To the best of our knowl-
edge, this is the first work where an accelerator is used
for speeding up hash operation for Infomap community
discovery.
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• For the Infomap application, ASA decreases branch mis-
prediction by 59%, CPI rate by 21%, and the total number
of instructions by 24% by eliminating expensive software
hash accumulation and collision handling operations.

• We demonstrate ASA’s limited capacity of on-chip CAM
is not an issue in handling big social and biological
networks. We show in section IV that more than 99%
of the vertices can be processed by only 8KB of CAM
per core.

II. BACKGROUND

In this section, we provide some background on the ap-
plication of the information-theoretic approach to community
detection and the motivation for an accelerator for hash
accumulation.

A. Definitions

We list some definitions and notations used in the paper
below.
Definition 1 (Graph (Network)). A graph is defined as G =
(V,E), where V is a set of vertices v and E is a set of edges
(links) (u, v), with u, v ∈ V .

In this paper, we use the terms graphs and networks
interchangeably. Even though community detection is an im-
portant task in graph analysis, there is no universally accepted
definition or formalization for the term community in a graph
G(V,E). One of the main reasons behind the complexity
of the problem is its ill-formalization. The related literature
intuitively describes communities as sets of nodes closer
among them than with the rest of the network. We provide
a simplistic but working definition below.

Definition 2 (Community). A community in a network is a
set of entities that share some closely correlated action with
the other entities of that set. A direct edge/link is considered
a particular and very important kind of action. See Fig. 1.

Discovering communities in graphs (e.g., social, biologi-
cal, and communication networks) is an important problem
in many scientific domains [9], [16], [27], [28], [33]. The
problem of community detection thus pertains to seeking
community assignment Cu for each vertex u ∈ V in a graph
G. There are several variants of the community discovery
problem–most algorithms [5], [9] find disjoint communities
(where each vertex belongs to a single community) while
some other algorithms [21] discover overlapping communities
(a vertex can belong to multiple communities). The application
of information-theoretic community discovery deals with the
problem of discovering disjoint communities in a network. In
separate studies, Lancichinetti et al. [18] and Aldecoa et al. [1]
identified and showed the information-theoretic approach of
community discovery, Infomap, delivers better solution quality
than many other community detection algorithms.

B. Information-Theoretic Community Discovery

Infomap uses a dynamic process (random walk) to reveal
the community structure within a network. Infomap exploits
the duality of compressing a dataset and extracting a structural

(a) (b)

Fig. 1: (a) A protein-protein interaction network in yeast [7].
The vertices (blue circles) represent different proteins and the
arcs (blue lines) represent interactions between those proteins.
(b) Grouping of proteins by community detection based on
their functional similarities. Proteins within the same group
have the same color and share similar biological properties.
The visualizations are generated using Gephi [6].

pattern in that dataset. That duality is discussed in a branch of
statistics called Minimum Description Length (MDL). While
the random walker traverses the network, its infinite traversal
path can be traced by assigning Huffman coding to reveal
structural regularity. More frequent traversal paths receive
shorter code length while less frequent traversal paths receive
longer code length. A straightforward way to think about how
it can discover communities is to divide the vertices into
different groups (communities) and then compute the Huffman
code (compressed code length) for each of the combinations.
For a network of n number of vertices, there are possibly 2n

such combinations, computing Huffman coding for each of
those combinations and then finding the most compressed one
is an NP-complete problem. Rosvall et al. [33] showed that
one can find the theoretical limit of maximum compression for
a given partitioning of the network by using Shanon’s entropy
theorem [36] without explicitly assigning Huffman coding for
a traversal path. Rosvall formulated an equation based on the
principle of minimum entropy theorem which he named the
Map Equation.

L(M) = q↷H(Q) +

m∑
i=1

pi⟳H(ρi) (1)

Equation (1) has two parts, the first part q↷H(Q) of
the right side of the equation represents the movement of
the random walk between the modules whereas the other
part

∑
i∈m pi⟳H(ρi) represents the movement of the random

walk within a module. In this paper, the terms module and
community represent the same meaning and will be used
interchangeably. The term q↷ is the probability of the random
walk exiting a module. The term H(Q) is the entropy of
the module, i.e., the average code length of the movements
between the modules where Q stands for the probability
distribution of the module entering rate. In the other part of
the equation, the term pi⟳ stands for the stay probability of
the random walk within module i. The parameter pi⟳ can be
calculated by summing the vertex visit probability (PageRank)
and the exit probability of the random walk for that module.
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The term H(ρi) is the entropy within the module, i.e., the
average code length of the random walk within module i. The
term ρi is the probability distribution of the code of module
i. For any vertex α, the vertex visit rate, i.e., the PageRank
pα can be computed taking teleportation τ into account.

Algorithm 1: FindBestCommunity

Data: A vertex/supernode vi of graph G(V,E)
Result: New community mnew for vertex vi

1 std :: unordered map < pair < int, double >>
outF lowtoModules

2 std :: unordered map < pair < int, double >>
inF lowFromModules

3 numModlinks← 0
4 for (linkIt←
vi.outLinks.begin() to vi.outLinks.end()) do

5 newModId← node.at(linkIt→ first).modId
6 if

(outF lowtoModules.count(newModId) > 0)
then

7 outF lowtoModules[newModId]+ =
linkIt→ second

8 else
9 outF lowtoModules[newModId]← linkIt→

second
10 inF lowFromMod[newModId]← 0.0
11 numModLinks← numsModLinks+ 1
12 end
13 end
14 Accumulate incoming flow in

inF lowFromModules (as in Ln. 4− 13)
15 bestDiffCodelen← 0.0
16 for (it←

outF lowtoModules.begin()to outF lowtoModules.end())
do

17 newModId← it→ first
18 outF lowToNewMod← it→ second
19 inF lowFromMod←

inF lowFromModules[newModId]
20 diffCodeLen←

calc(outF lowToNewMod, inF lowFromMod)

21 if (diffCodelen < bestDiffCodelen) then
22 bestDiffCodelen← diffCodelen
23 bestModuletoMove← newModId
24 end
25 end
26 return bestModuletoMove

C. Components of A Parallel Infomap Algorithm

An efficient parallel implementation of Infomap, known as
HyPC-Map, is presented in [14]. HyPC-Map has four major
compute kernels–we briefly introduce them next to clarify our
subsequent methods and contributions.
PageRank: This kernel computes the ergodic vertex visit
probability (PageRank) for all of the vertices taking teleporta-

tion into account. The PageRank [10] is computed using the
power iteration method. The ergodic vertex visit frequencies
are used to compute the module stay probability pi⟳ as well
as the exit probability of a vertex qi↷ from module i.
FindBestCommunity: This compute kernel is responsible for
finding the optimal community for each vertex in a greedy
manner. This kernel operates in the vertex level phase as well
as in the super node level phase. During the vertex level
phase, for each vertex, it greedily chooses the merge with the
neighboring vertex that reduces the MDL in equation (1) the
most. In the super node level phase, the generated groups of
vertices from the vertex level phase are passed to this kernel
in the form of a structure called a super node.
Convert2SuperNode: The groups of vertices generated in
the vertex level phase in the FindBestCommunity kernel are
represented by the structure called a super node. In a super
node, the member components are all the vertices belonging
to one group. The member vertices may be connected to other
super nodes with edges. If multiple vertices of one super node
are connected to another super node, a single super edge is
created with accumulated edge weights.
UpdateMembers: After the FindBestCommunity kernel finds
the new community membership for a vertex or a group of
vertices, the community membership field for each of the
vertices is updated.

D. Motivation for Accelerator

To understand the breakdown of computing costs of the
major kernels of parallel Infomap, we experimented on some
large networks. The results are shown in Fig. 2a. It is ev-
ident that FindBestCommunity is the most time-consuming
kernel (yellow bar) in Infomap taking 70% to 90% of the
complete application. Further, we observe that software hash
operations (orange bar) take as much as 50% to 65% of
the FindBestCommunity kernel (see Fig. 2b). For simplicity,
all the plots illustrated in Fig. 2 are single-core execution
of the application. This heavy use of software hash tables
stems from the way how Infomap implementation makes the
decision to change modules of an arbitrary vertex. From the
discussion of the extended version of the Map Equation in
[13], [33], it is sufficient to keep track of the exit probability
qi↷ of a module i and the stay probability of the module∑

α∈i pα to decide the next possible move for a vertex or
super node. The exit probability and the stay probability are
updated by the incoming and outgoing flow information from
one module to another. A closer look into FindBestCommunity
kernel is provided in Algorithm 1. During the module selection
process for each vertex in Algorithm 1, each vertex/supernode
maintains a pair of hash tables for storing the incoming flow
and outgoing flow from/to the neighboring vertices/supernodes
respectively. This flow information is used to compute the best
reduction in MDL while processing any vertex. Because of
this frequent use of the hash table, it becomes an expensive
phase (orange bar) of the FindBestCommunity kernel. The
software hash table, the C++ standard library unordered map,
suffers from high latency-bound memory access due to branch
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Fig. 2: The kernel breakdown of the Infomap application in native execution for large networks (Pokec and Orkut) in figure
2a. The majority of time is spent on FindBestCommunity kernel. A further breakdown in Fig. 2b shows hash operations taking
50% to 65% of that kernel computation time.

misprediction and collision chaining. At the beginning phase
of FindBestCommunity (in Algorithm 1), each vertex belongs
to its own community/module. As the algorithm progresses
through multiple iterations of FindBestCommunity, the ver-
tices of one module may move to another module. This is
done in a greedy optimization fashion. A vertex can move to
another module by following any of the connecting edges or by
random teleportation. A vertex may have neighboring vertices
or no neighbors at all. The neighboring vertices may belong
to the same or different modules. A vertex may follow any
of the edges to move to the module of another vertex if that
move results in the maximum compression of the minimum
description length described in Equation (1). The minimiza-
tion/change in the MDL for a move of a vertex to a module
is a function of edge flow to/from other neighboring vertices
[33]. The flow to/from a module for a vertex is expressed as
a function of the ergodic node visit frequency of the vertex
itself and the edge weight to/from that module. In Algorithm
1, lines 1 − 2 declare 2 hash tables for storing the outgoing
flow to other modules and incoming flow from other modules.
Lines 4 − 13 describe iterating over the adjacency neighbors
and storing/accumulating the module ID and corresponding
outgoing flow as a < key, value > pair. Line 14 refers to
doing similar actions for the incoming flow from the modules
to the current vertex. For simplicity, we omit to present the
flow coming from teleportation in the algorithm snippet. Lines
16 − 25 describe iterating over the < key, value > pair
and computing the difference in code length for a module
(newModId). The difference in code length is computed by the
function calc(outFLowToNewMod, inF lowFromMod) in
line 20. If moving to a module reduces the code length by more
than the reduction observed so far, the change in code length
is recorded along with the moduleId. From the description
of the algorithm for FindBestCommunity, it is evident that
most of the operations are hash table insertions, lookups, and
accumulations of the flow value.

E. Pin and ZSim

To simulate our hardware accelerator ASA, we use
ZSim [34], a Pin-based simulation infrastructure and tool. Pin
is a program for instrumenting executables built in Linux,

Windows, and macOS for Intel (R) IA-32, Intel64, and Itanium
(R) processors. Pin is a dynamic instrumentation tool that
intercepts the application binary during execution and injects
instrumentation code snippets at desired locations, and allows
inspection of program context information such as register
states. It stores and restores context information when nec-
essary so that the original execution flow is not affected by
the instrumentation. Pintools are commonly used for hardware
simulation as they can capture a natively executed instruction
stream and then replay it on a simulated architecture.

Further, we made some changes to ZSim to model ASA. A
software-implementation of the ASA architecture is controlled
via custom instrumentation of the xchg instruction, which
is not typically emitted by x86 compilers. We insert xchg
instructions with the different registers to differentiate between
inserting key-value pairs into the CAM (content addressable
memory) and loading data from the CAM. These operations
have associated latencies and use relevant ports within ZSim’s
out-of-order core model to correctly model the time spent
executing ASA instructions. Lastly, the register values are
read by ZSim to update the CAM state. This is important for
example when determining whether or not an ASA insertion
will cause overflow.

III. METHODOLOGY

We presented the FindBestCommunity kernel with software
hash in Section II. In this section, we present the changes
in design for the FindBestCommunity kernel using ASA.
We provide the corresponding pseudocode in Algorithm 2.
Further, in Fig. 3, we present the generalized block diagram
of the ASA micro-architecture. The original work on ASA
[42] discussed the ASA micro-architecture in detail for the
SpGEMM computation. Here, we only discuss the API calls
relevant to our context.

A. Hash Accumulation

The software hash accumulation in lines 4−13 of Algorithm
1 is replaced by the ASA accumulation call in line 7 of
Algorithm 2. Since each thread has its own core-local CAM,
the accumulate API call takes four parameters, the thread ID
(tid), the module ID (k), the hashed module ID (hash(k)) to
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Algorithm 2: FindBestCommunity_ASA

Data: A vertex/supernode vi of graph G(V,E)
Result: New community mnew for vertex vi

1 std :: vector < pair < key, value >>
nonoverflowed pairs

2 std :: vector < pair < key, value >>
overflowed pairs

3 tid← omp get thread num()
4 numModlinks← 0
5 for (linkIt←
vi.outLinks.begin() to vi.outLinks.end()) do

6 k ← node.at(linkIt→ first).modId
7 accumulate(tid, hash(k), k, linkIt→ second)
8 end
9 gather_CAM(tid, nonoverflowed_pairs,

overflowed_pairs)
10 if (!overflowed_pairs.empty()) then
11 sort_and_merge(nonoverflowed_pairs,

overflowed_pairs)
12 end
13 Accumulate incoming flow (as in Ln.

5− 12)
14 Iterate over the merged vector and

record the module (bestModuletoMove)
that minimizes code length most

15 return bestModuletoMove
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Fig. 3: Block diagram of the generalized ASA micro-
architecture. Different modules of the architecture and their
functionalities are described in Chao et al. [42] and therefore
skipped here for brevity.

index the CAM entry, and the flow value (linkIt→ second)
to accumulate in the corresponding CAM entry. There can be
three possible outcomes due to the call to accumulate. If the
key (k) is hashed to a unique index, a new entry is created in
the cache. If the key already exists in the cache, the passed
argument value is added to the partial sum. If the key is not

found and there is no space available in the cache, an entry is
evicted based on an LRU policy and stored in a queue buffer.

B. Gather CAM Entries

The API call gather CAM in line 9 of Algorithm 2,
takes the thread ID (tid) and the references to the vectors
for copying the CAM entries back to the memory. Vector
nonoverflowed pairs gets the contents of CAM whereas
vector overflowed pairs gets the content of the overflowed
queue buffer.

C. Sorting and Merging

In some cases, there might be an overflow due to the
limited cache entries (CAM size). If the overflow buffer
overflowed pairs is not empty, then the overflowed pairs
are pushed to the end of the nonoverflowed pairs and then
sorted by the keys. After that, the values of the same keys are
merged. This process is presented in lines 10−12 of Algorithm
2.

IV. EVALUATION

We use C++ for implementation and g++ 7.5.0 compiler for
building and incorporating the ASA accelerator with HyPC-
Map. The experiments and simulations are run on a Linux sys-
tem with an Intel 2.6 GHz 64−bit processor with 16 physical
cores, 2 sockets, and 8 physical cores in each of the sockets.
To match up the native configuration’s CPU clock frequency to
that of ZSim’s simulated CPUs, the scaling governor is set to
performance. This ensures uniform (non-turbo mode) native
CPU clock frequency. We use ZSim [34] as the hardware
architecture simulation tool. The data sets used in this paper
are collected from SNAP [20] and listed in Table I.

TABLE I: Network dataset for our experiments. We used
several social and information networks

Network # Vertices # Edges

Amazon 334863 925872
DBLP 317080 1049866
YouTube 1134890 2987624
soc-Pokec 1632803 30622564
LiveJournal 3997962 34681189
Orkut 3072441 117185083

A. Utilizing Limited CAM Capacity

There is a trade-off between the cost of the on-chip memory
of the accelerator (ASA) and the number of hash table entries
that can be accommodated. Fortunately, because of the power-
law degree distribution of the scale-free networks, most of the
vertices do not have more than a few neighbors. Only a few
vertices can have more than thousands of neighbors. Figure 4
shows this behavior for the 3 large social networks. In Figure
5, we show that having 8KB of memory per core is sufficient
to cover the neighborhood list of 99% of the vertices for all
the social networks shown in the plots. This observation can
be exploited for biological networks because those networks
follow similar sparsity and degree distribution.

5



 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×106

 4.1943×106

 0  100  200  300  400  500

O
cc

u
rr

en
ce

No. of Neighbors

Livejournal Network

(a) LiveJournal

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×106

 0  100  200  300  400

O
cc

u
rr

en
ce

No. of Neighbors

Pokec Network

(b) Soc-pokec

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858×106

 0  100  200  300  400

O
cc

u
rr

en
ce

No. of Neighbors

Youtube Network

(c) YouTube

Fig. 4: Illustrating the general nature of scale-free social networks displaying power-law degree distribution. A few vertices
may have high neighbor counts whereas the majority of the vertices (in this case millions of those vertices) have 0, or a few
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B. Validation of Native vs Baseline

Before we compare the application performance of Infomap
using hardware accelerated hash against software hash, we
validate the ZSim-simulated performance of Infomap with
software hash implementation [14] (which we call Baseline)
against its performance from native execution on the same
machine (without ZSim). ZSim [34] has been validated on Intel
Westmere architecture with an average of ∼ 10% error. For our
experiments, we validate on an Intel Ivy Bridge architecture.
We list the native hardware and ZSim simulation configura-
tions in Table II in column 2, and column 3 respectively. Note
that the L3 cache size of 20MB for Native configuration
(column 2) cannot be replicated for Baseline (column 3) since
ZSim requires the power of 2 for the cache sizes. The single
core validation results for native execution vs Baseline are
listed in Table III. The FindBestCommunity kernel is run
for multiple iterations. We list the run time for each of the
iterations in each row of the table for both the native and
Baseline executions along with the percentage difference in
column 4. The average error is ∼ 12.7% between native
and Baseline. Similarly, Table IV lists execution times for
native versus Baseline execution for 2 processing cores. The
difference in the run time between Native and Baseline could
be coming from the difference in LLC (L3) cache sizes or the
ZSim-induced simulation error.

TABLE II: Machine configurations for Native vs Baseline
validation.

Item Native Baseline

Processor 8 cores, 2.6GHz 8 cores, 2.6GHz
L1 instruction cache 32KB 32KB
L1 data cache 32KB 32KB
L2 private 256KB private 256KB
L3 shared 20MB shared 16MB
Main Memory DDR3− 1333MHz, DDR3− 1333MHz,

CL 1600MT/s CL10 1600MT/s

TABLE III: Runtime comparison in different iterations be-
tween Baseline and native using single processing core for
the YouTube social network

Iteration no. Native (sec) Baseline (sec) (% diff)

1 8.426 9.254 10
2 6.580 7.201 9
3 5.151 5.739 11
4 3.452 3.910 13
5 2.272 2.605 15
6 1.614 1.859 15
7 1.180 1.369 16

TABLE IV: Runtime comparison between baseline and native
in different iterations using 2 processing cores for the YouTube
social network

Iteration no. Native (sec) Baseline (sec) (% diff)

1 5.676 5.572 2
2 4.072 4.055 1
3 3.275 3.186 3
4 2.048 2.026 1
5 1.238 1.466 18

TABLE V: Time spent on hash operations for Baseline vs
ASA

Network Baseline (sec) ASA (sec)

Amazon 4.73 1.44
DBLP 7.35 1.86
YouTube 52.38 11.15
soc-Pokec 508.97 91.46
Orkut 1846.70 379.97

C. Performance Evaluation
We list the time spent on HashOperations in Table V–

for Baseline in column 2 and ASA in column 3. Further, in
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Fig. 6, we illustrate the speedup gain of ASA over Baseline
for hash operations across different networks for single-core
executions. We observe the highest single-core performance
gain of 5.56× for the soc-Pokec network. Similarly, ASA
delivers 3.28×, 3.95×, 4.7×, and 4.86× gain over Baseline
for Amazon, DBLP, YouTube, and Orkut networks, respec-
tively. Fig. 7 illustrates the performance breakdown of the
computational kernels between Baseline and ASA for multi-
core executions. We observe between (68 − 70)% reduction
in HashOperations computation time from Baseline to ASA
for multi-core execution for the Amazon network (Figure
7a). Similarly we observe between (75 − 77)% reduction in
HashOperations time for the DBLP network (Figure 7b).

The performance improvement observed from Baseline to
ASA comes from two primary reasons. ASA reduces the aver-
age number of instructions over software hash implementation.
Software hash tables incur collision chaining or linear probing
logic to handle collisions, which requires executing a few
additional instructions. ASA’s extension to ISA provides a
single CPU instruction for hash lookup and accumulation. In
Fig. 8a, we observe up to 24% reduction of the total number
of instructions for the FindBestCommunity kernel for some
larger networks. Fig. 9 illustrates 12% (Fig. 9a for Amazon)
and 15% (Fig. 9b for DBLP) reductions in the average
number of instructions per core from Baseline to ASA for
the FindBestCommunity kernel during multi-core executions.
The above statistics for the reduced number of instructions
in ASA include the instructions for handling overflow (lines
10 − 12 of Algorithm 2). For the soc-Pokec network, it only
takes 9.86% of the ASA computation time (Table V, column
3) and for the Orkut network, it only takes 13.31% of ASA
computation time to handle overflow.

Furthermore, ASA’s performance gain comes significantly
from reducing the number of branch mispredictions in the
software hash table. Branch mispredictions can be very ex-
pensive since the CPU core must flush all partially executed
instructions from the incorrect branch from its pipeline and
restart execution on the correct branch. Fig. 8b demonstrates

up to 59% decrease in the number of mispredicted branches for
larger networks. Fig. 10 demonstrates an average of 40% (Fig.
10a for Amazon) and 46% (Fig. 10b for DBLP) reductions in
the number of average branch mispredictions per core across
experiments running on different numbers of processing cores.

Moreover, resolving collisions in a software hash table often
results in irregular memory access patterns that are difficult
for hardware prefetchers to predict (e.g., to follow pointers
connecting entries that hash to the same bucket), potentially
causing memory latency stalls. Reducing the number of branch
mispredictions and irregular memory accesses due to hash
collisions results in lower CPI for ASA over Baseline. Fig.
8c demonstrates (18− 21)% reduction in CPI for some larger
networks (YouTube, soc-Pokec, and Orkut) in a single-core
execution. Similarly, in a multi-core execution, Fig. 11 shows
a 20% reduction in CPI rate for the Amazon network (Fig.
11a) and 21% reduction in CPI rate for the DBLP network
(Fig. 11b) on average per core from Baseline to ASA.

V. RELATED WORK

Using a hardware accelerator for efficient graph mining
applications is an important design concept for software-
hardware co-design. In general, the term graph data mining
refers to the strategies of discovering structural information
such as community, cliques, motifs, k-truss, and other patterns.
Graph data mining on real-world data sets suffers from under-
utilization of computing resources due to random access
patterns of the irregular graph structure and significant load
imbalance due to power-law degree distribution. The set of
possible patterns can grow exponentially with the size of the
input graph. All these motivate the hardware accelerator for
graph mining. While for machine learning algorithms, there
are a set of mature computational kernels and accelerators for
different kernels, the area of graph data mining is yet to reach
that point.

One graph mining accelerator, Gramer [39], is based on the
observation that most random memory requests come from
a small fraction of vertex and edge data. Gramer maintains
a smart cache hierarchy where the most frequently used
data/pattern is resident on a top level with a no-eviction policy
and the second level is on-chip memory with a lightweight
replacement policy. The difficulty in this approach lies in
identifying and managing valuable data. Flexminer [11], an-
other graph mining accelerator packaged with its compiler
program that operates on dedicated on-chip storage, memoizes
reusable connectivity information on a connectivity map (c-
map) and does not address the issue of fast accumulation
of values against keys. Another work IntersectX [31] designs
a stream-based ISA extension following the observation that
many graph pattern mining applications use the intersection
of two edge lists as core computation. Another accelerator
called SISA [8] identifies a similar set of operations (union,
intersection) and designs a set-centric ISA extension to process
with on-chip memory. Rao et al. [32] propose an accelerator
SparseCore for sparse tensor and graph pattern computation
for streaming data or sparse vector. Adam et al. [2] propose a
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hardware accelerator with dedicated hardware units to handle
the irregular data movements of graph computation in Graph
Neural Network (GNN) that can be used to solve community
detection problems. None of the literature [2], [8], [11],
[31], [32], [39] deal with the problem of accelerating key-
value matching and accumulation for vertex-neighborhood
connectivity which is addressed in our work. Yang et al. [38]
designed a hash accelerator using FPGA on-chip SRAM with
scalability limited to 16 processing engines (PE). Zhang et al.
[43] design a hash accelerator by ISA extensions and hardware
changes with most operations handled by the accelerator and

rare cases handled by software. The work [43] proposed
two implementations of the hash accelerator, Flat-HTA, and
Hierarchical HTA. Chao et al. [42] show both versions can be
outperformed by ASA in their comparison of the SpGEMM
computation.

VI. CONCLUSION

Community discovery is a popular application for salient
motif discovery on social and relational networks. Using hard-
ware accelerators to speed up the computation of certain parts
of the software kernel has a very high impact on hardware-
software co-design. To the best of our knowledge, our work is
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Fig. 11: Average CPI (the number of cycles retired per instruction) reduced from Baseline to ASA. The reduction factor is
consistent across multi-core executions for the Amazon network and the DBLP network respectively

the first one to incorporate a hardware accelerator for sparse
accumulation for information-theoretic community discovery.
We have articulated in this study that existing implementations
of Infomap with the regular software hash kernel are not
well-served by the general-purpose CPUs. In this work, we
demonstrate that in addition to the optimization from the
algorithmic side, there remains an opportunity to gain higher
performance throughput by using an accelerator that computes
certain computations more efficiently than the general-purpose
hardware. Existing accelerators for graph pattern mining fail
to address accelerating key-value lookup and accumulation.
Through this work, we show that the ASA accelerator can
accelerate not only the SpGEMM kernel, but also other
applications that heavily rely on hash lookup and accumulation
by reducing the number of branch mispredictions, average CPI,
and the total number of instructions.
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