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Abstract—Community detection has become an important
graph analysis kernel due to the tremendous growth of social
networks and genomics discoveries. Even though there exist
a large number of algorithms in the literature, studies show
that community detection based on an information-theoretic
approach (known as Infomap) delivers better quality solutions
than others. However, the serial Infomap algorithm does not
scale well for large graphs and due to the inherent sequential
nature, parallelizing Infomap method is non-trivial. In this
paper, we develop a hybrid parallel approach for community
detection in graphs using Information Theory. We perform
extensive microbenchmarking and analyze hardware param-
eters to identify and address performance bottlenecks. We
also use cache optimized data structures to improve cache
locality. All these optimizations lead to a more efficient and
scalable community detection algorithm, HyPC-Map, which
demonstrates a 16-fold speedup (higher than the state-of-the-
art map-based techniques) without sacrificing the quality of
the solution.

Index Terms—Community Detection; Parallel Algorithms;
Information-Theory; Hybrid Parallel; Map Equation; MDL;

1. Introduction

Discovering communities in graphs (e.g., social, biological,
and communication networks) is an important problem in
many scientific domains [1], [2], [3], [4], [5]. Due to the
huge growth of network size, scalable algorithms and tools
are needed [6], [7], [8]. Thus, the problem of community
discovery has gained considerable attention among High-
Performance Computing (HPC) researchers and practitioners
[9], [10]. A wide variety of applications extensively use
community discovery as a computing kernel. For example,
in genomics application, finding protein groups with similar
structural features [8], [11] uses community detection kernel.
Other applications [12], [13] include detecting anomalous
behavior in cyber-security domain, finding critical point/entity
in rumour propagation or infectious disease spreading, classi-
fying groups in social and business networks based on their
activities [4], etc.
While the problem of discovering community has a rich
literature [1], [14], [2], [3], [4], [5], [15], [6], it has attracted

high attention lately because of the growth of social (e.g.,
human contacts, friendship on social media, disease spread-
ing), biological (e.g., protein interaction, genomics), and
other graph-related applications. The sheer volume of the
data that needs to be processed necessitate the development
of parallel computational strategies both in homogeneous
and heterogeneous computing platforms. Lancichinetti et
al. presented a survey of prominent community detection
algorithms in [12]. An information-theoretic approach, In-
fomap was identified as one of the better algorithms in terms
of solution quality. In recent years, there have been efforts
for parallelizing several community detection algorithms.
Among those algorithms, Louvain method [3] has gained
perhaps the highest amount of attention despite this method’s
resolution limit problem [16]. Markov clustering technique
[11] is another algorithm that has been parallelized [8]. The
high-quality solution given by serial Infomap [12] motivates
us to develop scalable parallel method based on information-
theoretic approach. Our contributions in this paper are as
follows.

‚ We design a scalable parallel algorithm for community
detection in large graphs based on information-theoretic
approach. We tackle the inherent sequential nature
of Infomap approach by developing heuristics, which
enable us to achieve the similar high quality solution
as serial algorithm.

‚ We combined both distributed-memory and shared-
memory based parallelism to design our hybrid parallel
algorithm. Our hybrid parallel algorithm demonstrates
better scalability than related methods (e.g., [7], [9],
[17]) in the literature.

‚ We performed extensive microbenchmarking and an-
alyzed memory subsystems to identify and address
performance bottlenecks. Such analyses allow us to
optimize the algorithm design. We use cache-optimized
data structures to improve cache locality.

‚ Our algorithm scales to large graphs. We achieve better
speedups than the state-of-the-art techniques based
on information theory without sacrificing the solution
quality. We experimented on a range of social and
scientific graph datasets. Our algorithm demonstrates
up to 16x speedup comparing to its’ sequential-self
and up to 25x speedup comparing to the sequential
implementation by Rosvall [18].



2. Information-Theoretic Approach for Com-
munity Detection

Rosvall et al. [4] first proposed the approach of discovering
community by using Shanon’s minimum entropy theorem
[19] to compress the information generated by a dynamic
process (random walk) on a network. Lancichinetti et al. [12]
in their comparative study, referred to Rosvall’s approach of
community detection as Infomap.
Rosvall devised an optimization function that he referred to
as the map equation (1).

LpMq “ qñHpQq `
m
ÿ

i“1

piœHpρ
iq (1)

Equation 1 has two parts, the first part qñHpQq of the
right side of the equation represents the movement of the
random walk between the modules whereas the other part
ř

mPM piœHpρ
iq represents the movement of the random

walk within a module. The term qñ is the probability of the
random walk exiting a module. The term HpQq is the entropy
of the module, i.e., the average code length of the movements
between the modules where Q stands for the probability
distribution of the module entering rate. In the other part
of the equation, the term piœ stands for the stay probability
of the random walk within module i. The parameter piœ
can be calculated by summing the vertex visit probability
(PageRank) and the exit probability of the random walk
for that module. The term Hpρiq is the entropy within the
module, i.e., the average code length of the random walk
within module i, which is named as module code length.
The term ρi is the probability distribution of the code of
module i. For any vertex p, the vertex visit rate, i.e., the
PageRank pα can be computed taking teleportation τ into
account.

2.1. Sequential Infomap Algorithm
Algorithm 1 shows the working procedure of Infomap. Lines
1 ´ 5 present the notation used inside the algorithm. Line
6´ 9 discusses the procedure of computing the vertex visit
rate (i.e. PageRank) using the power iteration method. The
algorithm starts with an initial number of communities equals
to the number of vertices N Ð |V |. M represents the set of
the modules, mi represents a single community. Initially, mi

has only one member vertex, but as the algorithm progresses,
mi may get more than one vertices to many. Line 10 tells us
the initial number of modules M consists of all the modules
mi, and a vertex v belongs to a single module at a time.
Line 12 computes the initial exit probability for a module
qi. Lines 15´ 28 are the core part of the algorithm where
the community optimization phase takes place in multiple
iterations. In line 16, the current code length is preserved.
Every vertex in the vertex set V is picked in a random order
for community optimization (lines 17 ´ 19). Considering
all of the neighborhood modules of a vertex, the one that

Algorithm 1 Sequential Infomap
Require: A graph GpV,Eq, V total vertices, E total edges, N Ð

|V |
Ensure: M : M ď N , M is the total number of communities,

M ! N
1: mi, ith module
2: qi, exit probability of module mi

3: γ, minimum threshold for codelength improvement
4: Lold, codelength of previous iteration
5: L, codelength of current iteration

6: for i “ 1 to N do
7: Calculate initial vertex visit rate pvi Ð 1{N
8: Compute vertex visit rate pvi by power iteration
9: end for

10: Declare initial total module M Ð t@mi|pvα P miq&pvα R
mjq, V “

řN
1 vu

11: for mi “ 1 to M do
12: Calculate exit probability qi
13: end for
14: Calculate initial codelength LÐ LpMq
15: do
16: Lold Ð L
17: for j “ 1 to N do
18: Pick every vertex vj in a random order
19: mnew Ð findNewBestModulepvjq
20: Compute L cumulatively
21: end for
22: Update M Ð createSuperNodespq
23: for j “ 1 to M do
24: Pick every super node mj in a random order
25: mnew Ð findNewBestModulepmjq

26: Compute L cumulatively
27: end for
28: while pLold ´ Lq ą γ
29: return M

minimizes the code length most (line 20) is selected (or
it stays in its current module if none of the neighborhood
modules decreases the current code length). Line 22 discusses
about creating the super node. Similar to the individual vertex
module optimization phase, the super node level optimization
phase is conducted in lines 23 ´ 27. This continues until
the change in code length falls below a certain user-defined
threshold parameter γ. The return value of the algorithm is
the discovered communities (line 29).

3. Parallelizing Map-based Method for Com-
munity Detection

The sequential Infomap algorithm is known as one of
the better algorithms for community detection [12], [13].
However, the serial algorithm demonstrates limited scalability.
Parallelizing Infomap algorithm is non-trivial due to a number
of challenges.

3.1. Challenges in Distributing Computation/Data

While distributing computation and data among processing
units, our map-based approach demonstrates the following



challenges and problems–(i) Vertex bouncing problem: The
notion behind this problem is when two vertices having
strong affinity are distributed to two different processes,
each of the vertices tries to move to the community of the
other vertex. (ii) Inconsistent update ordering: We consider
a synchronous parallel approach. Maintaining uniformity of
community assignment during synchronization is challenging.
This happens because of different synchronization orders by
different processes. (iii) Inactive vertices: The community
assignment process for the vertices continues for multiple iter-
ations. In the initial few iterations, most of the vertices change
communities and then find their stable place (community).
After a vertex moves to some community and stays in that
communities for a few subsequent iterations, it is more likely
to stay in that community until the program finishes. In later
iterations, fewer to fewer community updates take place. This
observation leads us to the conclusion that in every iteration,
considering all of the vertices in the network for community
update incurs redundant activities that waste computational
resources. We need to distinguish the vertices and pick the
ones that are more likely to change their communities in
subsequent iterations. All these issues are discussed in detail
in [17].

3.2. Solution Strategies: Our Heuristics

We developed the following heuristics to overcome the
challenges mentioned above.

3.2.1. Solution to Vertex Bouncing Problem. To prevent
the issue arising from vertex bouncing problem, we adopted
numeric ordering during the synchronization step. To under-
stand how it works, suppose, uÑ v in process P1 and v Ñ u
in process P2 is accepted and the other one is discarded.
The way we take the decision of accepting and discarding a
move is to first check the numeric value of the ids of the
current communities of the vertices u and v. Then, select
the move from lower id community to higher id community.
For instance, between the two communities Cu and Cv, if
the numeric value of the id for community Cu is less than
the numeric value of the id for community Cv , we allow the
move of u to Cv, but the move of v to Cu is ignored.

3.2.2. Solution to Inconsistent Update Ordering. For
maintaining uniform community assignment for vertices
across all of the processes, we have taken the heuristic
of priority-based community assignment. In this scheme, the
decision of community assignment for a specific vertex is
taken by the owner process of a vertex. Every process will
honor the community assignment information received for
vertices processed by other MPI processes. This is a simple
yet effective approach.

3.2.3. Solution to Inactive Vertices Problem. To prevent
recomputing the community assignment for the vertices that
are unlikely to change their current communities, we need
to distinguish those vertices from the other vertices. We
name those vertices as Inactive Vertices that are unlikely

to change their communities in the current iteration. The
vertices that may move to different communities in the next
iteration, we call those Active Vertices. It is important to
note that, there is no deterministic way to decide which
vertices will be active or which vertices will be inactive in
the immediate next iteration. It is empirically observed that
the vertices that change their communities in an iteration
will likely change their communities in the immediate next
iteration. Additionally, the neighbors of those vertices may
become active too. Therefore, we need to have a prediction
list of the vertices that may become active before an iteration
starts. The prediction list can be made from the outcome
of the community assignment of the immediate previous
iteration. The prediction list contains the vertices changing
their communities in the previous iteration as well as their
immediate neighbors.

4. HyPC-Map: Hybrid Parallel Community
Discovery using Infomap

We design our hybrid parallel algorithm, HyPC-Map, based
on the map equation discussed in Section 2 and the heuristics
in Section 3. We then optimize our algorithm based on
microbenchmarking and hardware profiling.

4.1. Overview of the Algorithm
HyPC-Map can be divided into the following majors steps.
The sequence of the steps is maintained during actual
computation.

1) Computing the ergodic node visit frequency (PageRank)
for the network vertices inside each MPI process with
combination of OpenMP based parallelism.

2) Community optimization for each of the subgraphs
inside each MPI process in parallel. Each MPI pro-
cess spawns t-number of OpenMP threads to compute
community for t-number of vertices concurrently. This
continues for multiple iterations.

3) Each MPI process exchanges the information of the
discovered communities of its subgraph vertices with
the rest of the MPI processes. This phase is called the
synchronization step.

4) Every MPI process creates super node of the modules
it has with combination of OpenMP parallelism. The
edges across distinct vertices of any two supernodes are
replaced by a single edge of accumulated edge-weights.

5) Each MPI process spawns t-number of threads to find
communities of t-number of super node concurrently.
This continues for multiple iterations until no more
improvement of the code length happens.

6) Each MPI process synchronizes the community mem-
bership for the supernode(s) it processed with other
MPI processes for maintaining uniform community
information across the MPI processes.

Algorithm 2 shows the design of the hybrid memory parallel
Infomap. In lines 6 ´ 7, P and t represent the number of
distributed memory entity MPI process and shared memory



Algorithm 2 Hybrid Infomap
Require: A graph GpV,Eq, N Ð |V |, V total vertices set, E

total edges set
Ensure: M : M ď N , M is the total number of communities,

M ! N
1: mi, ith module
2: qi, exit probability of module mi

3: γ, minimum threshold for codelength improvement
4: Lold, codelength of previous iteration
5: L, codelength of current iteration
6: P , number of MPI processes spawned
7: t, number of OpenMP threads spawned

8: for i “ 1 to N in t´ way parallel do
9: Calculate initial vertex visit rate pvi Ð 1{N

10: Compute vertex visit rate pvi by power iteration
11: end for
12: Declare initial total module M Ð t@mi|pvα P miq&pvα R

mjq, V “
řN

1 vu

13: for mi “ 1 to M in t´ way parallel do
14: Calculate exit probability qi
15: end for
16: Calculate initial codelength LÐ LpMq

17: do
18: Lold Ð L
19: for process p = 1 to P do
20: Compute vertex indices range rvstart, vends
21: end for
22: for j “ vstart to vend in t´ way parallel do
23: Pick every active vertex vj in a random order
24: mnew Ð findNewBestModulepvjq
25: Compute L cumulatively
26: end for
27: Synchronize mnew P tM |mnew,mold PMu across P
28: Update M Ð createSuperNodepq in t´ way parallel
29: for process p = 1 to P do
30: Compute super node indices rmstart,mends

31: end for
32: for j “ mstart to mend in t´ way parallel do
33: Pick every active super node mj in a random order
34: mnew Ð findNewBestModulepmjq

35: mj Ð tmnew|@vj P mju

36: Compute L cumulatively
37: end for
38: Synchronize mnew P tM |mnew,mold PMu across P
39: while (Lold ´ Lq ą γ
40: return M

entity OpenMP thread respectively. Lines 8´ 16 are similar
to lines 6´ 14 in algorithm 1 except here we have used t
number of threads to compute the vertex visit rate (line 9´10)
and exit probability (line 14) in each compute node. This is
step 1 of the high-level overview. Lines 17´39 in algorithm
2 do the computation of the community optimization. For
each process p, the corresponding part of the original graph
for community discovery is computed (line 20). The number
of partition of the original graph is equal to the number of
process P . For workload balance across the processes, metis
[20] edge-cut partitioner is used. For the subgraph received

by each process p, t-number of OpenMP threads are spawned
to find the best community in an iteration for t-number of
vertices in parallel. This is step 2. The synchronization of
the community for each vertex takes place in line 27 and
38 in algorithm 2 (step 3). Line 28 describes the super node
creation phase which is step 4 of the high-level overview.
Lines 29 ´ 31 describe the partitioning of the super node
across multiple processes P . Lines 32 ´ 37 are similar to
the community optimization phase in individual vertex level
except the entity processed here is super node instead of an
individual vertex. This is step 5. At the end of each iteration,
the synchronization (line 38) of the supernode communities
occurs (step 6). Steps 5 and 6 continues until the change in
code length falls below a certain threshold τ . At the end of
the algorithm, the resultant number of communities M is
returned (line 40).

4.2. Optimizing Computational Kernels

TABLE 1: Performance micro-benchmark of insertion and
read operations between c++ map vs unordered map

Number of Insertion Insertion Read Read
entries map (µs) unordered map (µs) unordered

map (µs) map (µs)

2048 1904 1284 70 58
4096 3991 2586 110 123
8192 8499 5139 230 239
16384 16927 9764 462 465
32768 34916 19197 887 902
65536 75827 37914 1689 1810
131072 166398 76855 3936 3608

The implementation of HyPC-Map can be broken down into
five major kernels. Those kernels are illustrated in figure 1
as stack graph according to the percentage of their run time
for different networks. The PageRank kernel computes the
ergodic node visit frequency using PageRank [21] algorithm
by power iteration method. The Convert2SuperNode kernel
creates the super nodes from a group of vertices with
the same module id with edge between super nodes are
the combined edges with a sum of edge-weights. The
UpdateMembers kernel updates the member vertices for each
of the modules/communities after each iteration. The Commu-
nityOptimization kernel comprises of finding the community
in the individual vertex phase and in the super node phase.
From figure 1, it is evident that CommunityOptimization
kernel is the most time-consuming part of the algorithm.
It takes as much as 89% of the execution time (Orkut
network) to as much as 74% of the execution time (Youtube
network). The performance of the data structure being used
inside the kernel is a major contributor to the performance.
To efficiently store, search, and process the community
memberships and the corresponding flows of the neighboring
adjacency list of a vertex, key-value (map) is used instead of
the array (e.g., vector) data structure. One vertex may have
the neighborhood vertices that belong to distinct communities
or more than one neighboring vertices may collapse into
(as the algorithm progresses) one community. That makes



key-value data structure a better choice for memory storage
and efficient search. The map data structure built in C++ STL
internally uses RB-tree that maintains the ordering of the key.
On the contrary, the unordered map data structure uses array
and hashing for storing the data. From our micro-benchmark
analysis listed in table 1, we saw a significant difference
in insertion performance between map and unordered map.
The time taken for insertion of the entry (each entry is a
key-value pair of integer and double value) is almost half for
unordered map compared to map for different numbre of
entries. This observation led us to performance improvement
for the CommunityOptimization kernel from 1095 seconds to
1030 seconds for the Orkut network, and from 55 seconds to
37 seconds for the Youtube network. However, the Communi-
tyOptimization kernel still dominates. In an attempt to further
optimize this kernel, we choose OpenMP multithreading with
discretion on critical zones inside the kernel. This leads us
to a massive performance gain as evident from figure 2. The
execution time of CommunityOptimization kernel reduces to
240 seconds from the 1030 seconds for the Orkut network.
Similar kinds of performance gain are observed for other
networks as illustrated in figure 2.
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Figure 1: The operational kernels of our initial implemen-
tation of the distributed (MPI) Infomap algorithm. The per-
centage (%) breakdown of runtime for 4 different networks
is illustrated. It is evident that the CommunityOptimization
kernel is the major portion of the execution time.
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Figure 2: Runtime improvement of the operational kernel
of Infomap because of cache-optimized kernel and multi-
threading

5. Experimental Setting

We implement our algorithm using C++ programming lan-
guage, MPI, and OpenMP frameworks. We used g++ com-
piler for building the code. The program supports network
in compressed sparse row (CSR) format.

5.1. Computational Infrastructure

We used large compute clusters to perform experimentation
on our algorithm. We used both the Cori supercomputers
owned by National Energy Research Scientific Computing
Center (NERSC) and LONI QB2 [22] system to experiment
on our algorithms.

5.2. Datasets Used in Experiments

We have used networks of different sizes ranging from
about a million vertices and edges to over a hundred million
edges. These are real-world networks with the power-law
degree distribution, a common characteristic of the social
networks. Such power-law distribution also allows us to test
our algorithm in the worst-case scenario. All of the networks
in our datasets are collected from SNAP [23].

6. Performance Evaluation

We evaluate our algorithm based on both solution quality
and parallel scalability, and compare to other information-
theoretic approaches as well as Markov Clustering algorithm
(MCL).

6.1. Quality Assessment of Discovered Communi-
ties

Infomap delivers better quality of communities among state-
of-the-art techniques as observed by several benchmark
studies [12], [24]. For quality comparison of the detected
communities, we used Modularity, Conductance, and conver-
gence MDL value. We compare our result with sequential
Infomap.

6.1.1. Convergence of the Objective Function. Our objec-
tive function of Infomap minimizes the MDL. It is chal-
lenging to improve the MDL in distributed implementation.
In case of distributed implementation, there is a possibility
of premature convergence resulting in an outcome of less
minimization of the MDL as observed by [7]. The outcome
we achieved by optimizing the objective function 1 is very
close to the MDL improvement found in [25]. In figure 3a,
we have shown the final converged value of the MDL. The
difference in MDL is very insignificant in all the cases with
a difference of as low as 0.08% (Amazon) to a maximum
of 3% (Wiki-topcats). It indicates the detected communities
after convergence are similar to that of RelaxMap [25].

6.1.2. Modularity. We can see from figure 3b the values
of Modularity vary insignificantly for the different networks
shown in the figure. We see no change in modularity for a
different number of processors for the DBLP network, no
change for the LiveJournal network, and less than 2% of the
difference for 1280 processors for the Orkut network.
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Figure 3: Illustration of the quality of discovered communities in terms of MDL, modularity, and conductance. The numeric
value on top of each histogram bar in each figure demonstrates the values of the quality metrics in pair for 1 vs 1280
processors.

6.1.3. Conductance. From figure 3c we see there is no
difference between 1 processor vs 1280 processors executions
for the DBLP network and the LiveJournal network. For the
Orkut network, the Conductance value is different by less
than 2% for 1280 processors. Therefore, we can conclude
that the quality of the detected communities of our Infomap
implementation is scalable to a varying number of processors
for different networks.

6.1.4. Normalized Mutual Information. Similar to Modu-
larity and Conductance, NMI can be used to measure the
scalability in terms of quality for a different number of
processors. In tables 2 and 3, we report the consistency of
the quality for different processors using both real-world
networks and synthetic networks with known truth partition.
Since NMI requires known truth partition, we used static
graphs from MIT GraphChallenge network data sets [26] as
shown in table 3.

6.2. Parallel Performance

6.2.1. Speedup Gain. In table 4, we show the performance
gain in terms of speedup. To the best of our knowledge,
our parallel implementation obtained better speedup than
state-of-the-art information-theoretic approaches. For smaller
network such as Amazon, DBLP, and Youtube, the speedup
gain is 2.78, 3.66 and 4.58 respectively. For larger networks
such as Wiki-topcats, Soc-pokec and Orkut, the speedup gain
is 10.52, 12.52, and 16.16 respectively. All of these speedups
are significantly higher than state-of-the-art implementations
[27], [9]. Additionally, we compare the speedup with the
original sequential implementation of Infomap [18] by Ros-
vall et al. [4]. We observe even higher speedup, reaching as
high as „ 25X for the LiveJournal network and „ 21.4X
for the Orkut network. Both of those are large networks.
This demonstrates the benefit of using cache-optimized data
structure and efficient community optimization kernel that
lower the sequential computation time. The experiments are
conducted with a different number of MPI processes ranging
from 1 to 128 while each process spawns 10 OpenMP threads.
This enables us to use all of the processors available in a
single QB2 [28] compute node. The highest speedup comes
from using 1280 p128ˆ 10q processors.

6.2.2. Scalability Analysis. In figure 4, we illustrate the
runtime comparison of our implementation for 3 different
networks. For Orkut network in figure 4a, the runtime in a
single processor of 2836 seconds reduces to 176 seconds for
1280 processors. For LiveJournal network in figure 4b, the
runtime reduces to 104.7 seconds with 1280 processors from
a single processor runtime of 840 seconds. For the Pokec
network in figure 4c, the runtime is as less as 63 seconds
using 1280 processors than the runtime of single processor
performance of 787 seconds.

6.2.3. Comparison with state-of-the-art techniques. In
table 5, we compared HyPC-Map with state-of-the-art tech-
niques. We listed the original Infomap and the parallel algo-
rithms developed until the time of this study. Additionally,
the strength and the weakness of those works are listed.
GossipMap and Distributed Infomap are good candidates for
comparison with HyPC-Map as both of them use distributed-
memory kernels. Despite using 4096 processing units, the
maximum speedup reported for Distributed Infomap [27],
[9] is 6.02X , the implementation is not publicly available
for comparison. Therefore, we choose to compare with
the GossipMap. GossipMap reformulates the map equation
as an incremental computation that can be updated based
on a single vertex movement allowing it to be evaluated
locally. It estimates the global MDL using a purely local
computation and adopts an asynchronous gossiping protocol
to approximate the needed information for each vertex. The
reported scalability for this work is up to 128 parallel units.
We ran the experiments in our local computing server due
to a large number of dependencies for GossipMap. We
compared GossipMap with HyPC-Map in its’ single-threaded
distributed (MPI) form and multi-threaded distributed form.
Figure 5 shows runtime and scalability comparison for 3
different networks between GossipMap and single-threaded
distributed HyPC-Map and multi-threaded distributed HyPC-
Map. From figure 5, we observe HyPC-Map uses a highly
efficient algorithm. The single-processor run times for HyPC-
Map are 730, 660, and 600 seconds whereas the single proces-
sor run times for GossipMap are 6734, 4316, 5800 seconds
respectively for the LiveJournal network, the Pokec network,
and the Wiki-topcat network. There are differences in runtime
using 16 or 32 processing units between distributed form
and hybrid form of HyPC-Map as reported in table 6. The
hybrid form attains better runtime and parallel efficiency



TABLE 2: Scalability of HyPC-Map in terms of the quality metrics: Modularity and Conductance

Modularity Conduct.
Network 1 20 40 80 160 320 640 1280 1 20 40 80 160 320 640 1280

Amazon 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
DBLP 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
LiveJournal 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53
Orkut 0.42 0.38 0.40 0.40 0.42 0.42 0.41 0.41 0.55 0.51 0.55 0.55 0.54 0.56 0.54 0.56

TABLE 3: Scalability of HyPC-Map in terms of Normalized Mutual Information (NMI) for a different number of processors

NMI
Network # Vertices # Edges 1 20 40 80 160 320 640 1280

SG 50000 50000 1011755 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
SG 500000 500000 10160671 0.85 0.85 0.86 0.86 0.87 0.87 0.87 0.88
SG 2000000 2000000 40670978 0.84 0.84 0.84 0.85 0.86 0.85 0.87 0.87
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Figure 4: Illustrating the scalability and reduction in execution time with 3 different networks. For instance, for Orkut
network (4a), the execution time reduces from 2836 sec to 176 seconds using 1280 processors. Similarly, for Pokec network
(4c), the execution time reduces from 787 sec to 63 seconds using 1280 processors.

TABLE 4: Speedup comparison with original Infomap [18]
by Rosvall et al. [4] (column 3), and with sequential HyPC-
Map (column 2) on various social and information networks.

Network Speedup Speedup
(vs sequential self) (vs original Infomap)

Amazon 2.78 8.79
DBLP 3.66 7.00
Youtube 4.58 9.43
LiveJournal 8.19 25.11
Wiki-topcats 10.52 16.06
Soc-pokec 12.52 20.67
Orkut 16.16 21.42

than its’ distributed self thanks to the less communication
overhead during the synchronization step among a fewer
number of distributed processes while using the same number
of processing units. Finally, the hybrid form of HyPC-Map
outperforms GossipMap in terms of both execution time
and relative parallel efficiency εr “

p1T pp1q
p2T pp2q

. The relative
parallel efficiency drops for GossipMap in higher percentage
with an increasing number of processing units. Here, T pp1q
and T pp2q are the execution times for p1 and p2 parallel
units respectively. Table 6 shows the comparison between
GossipMap and HyPC-Map in terms of relative efficiency εr
for different scenarios. It is important to note that, the target
of HyPC-Map is to achieve better performance and scalability
for fast community discovery. Using a hybrid form enables
that while bridging the gap of high communication cost due
to synchronization and less quality due to asynchronous

community optimization. The comparison of the quality
between GossipMap and HyPC-Map is illustrated in terms
of MDL in figure 6 displaying similar values.

6.2.3.1. Comparison with other community discovery
strategies. HipMCL [8] is a parallel community discovery
algorithm that uses the Markov Clustering algorithm (MCL)
[11] as its’ core. Lancichinetti et al. [12] demonstrated
different comparisons among Infomap, Louvain, and MCL
in their work based on different benchmarks (e.g., GN,
LFR, random graphs). HipMCL, one of the state-of-the-
art techniques for clustering, overcomes the performance
and memory limitation of MCL as demonstrated by Azad
et al. [8]. HipMCL uses SpGEMM (sparse matrix-matrix
multiplication) as its’ community optimization kernel. The
SpGEMM kernel implements a sparse form of SUMMA
[29] for distributed computation of the graph in adjacency
matrix form with the requirement of the number of MPI
processes a perfect square number so that they can be
divided into a square grid (e.g., 1 ˆ 1, 2 ˆ 2, 4 ˆ 4).
When we compared HipMCL with HyPC-Map, we observed
HyPC-Map outperforms in memory requirement and runtime
performance. HipMCL maintains 3 matrices in the SpGEMM
kernel which is much higher than what HyPC-Map requires.
Consequently, bigger networks of our used data sets in
this study could not be processed by HipMCL using all
available 128 GB memory of the NERSC Cori haswell node
due to memory limit exceed (MLE) as listed in table 7.
using a single compute node (e.g., Youtube, Orkut) and 4
compute nodes (e.g., Orkut). We observe that HipMCl takes a
substantially large amount of time to process real-world social



TABLE 5: Comparison of HyPC-Map with state-of-the-art techniques

Work Name Type Strength Weakness

Infomap [4] Sequential High accuracy Computationally expensive
RelaxMap [25] Shared-memory parallelism High accuracy Scalability limited to single node
Gossipmap [7] Asynchronous distributed-memory parallelism Asynchronous Scalability up to 128 parallel units
Distributed Infomap [17] Synchronous distributed-memory parallelism Scales to 512 processors Speedup up to „ 5X
Distributed Infomap [27] Synchronous distributed-memory parallelism Scales to „ 4k processors Speedup up to „ 6X
HyPC-Map Synchronous hybrid memory parallelism High accuracy & speedup

networks listed in table 7 that follows power-law degree
distribution. Despite using all of 32 processors of the Haswell
compute node and using multiple compute nodes (e.g., 4, 16),
HipMCL still falls behind HyPC-Map’s one compute node
runtime. Fortunato et al. [16] discussed the resolution limit
problem present in modularity-based community detection
strategies (e.g., Louvain). A parallel implementation of the
modularity-based algorithm inherits such a problem along
with the additional challenges emerging from parallelization.
Lancichinetti et al. [12] demonstrated detailed comparisons
between sequential Louvain and Infomap in their work.

7. Related Work

Several parallel implementations exist for the modularity-
based approach of the Louvain method. An OpenMP imple-
mentation is given by Bhowmick et al. [30]. Hiroaki et al.
[31] and Zhang et al. [32] demonstrated a fast modularity-
based community detection by avoiding searching all the
vertices in each iteration. GPU-based parallel Louvain is
presented in the study of Cheong et al. [33] and Naim
et al. [34]. A combination of the Louvain algorithm and
the breadth-first search (BFS) is used by Staudt et al. [35],
[36] for distributed-memory parallelization. Zeng et al. [37]
designed parallel Louvain with workload balancing. The
works by Sattar et al. [38] and Sayan et al. [39] demonstrated
a distributed`shared memory (MPI ` OpenMP) based work
on the Louvain algorithm. The work by Peixoto et al. [40]
and [10] are shared-memory based parallel implementation
of statistical inference method. Distributed memory-based
parallel works are done by Uppal et al. [41], [42]. There is
less effort in developing parallel algorithms for Information-
theoretic approach. Bae et al. [25] developed an OpenMP-
based algorithm and a distributed memory algorithm [7]
using the graphlab framework [43]. The distributed memory
parallel work by Faysal et al. [17] shows scalability of up to
512 MPI processes. The works by Zeng et al. on distributed
memory parallel implementation [27], [9] shows limited
speedup despite using thousands of processors. The work
we present in this paper addresses the parallelization scheme
for high scalability while maintaining accuracy as good as
the sequential algorithm.

8. Conclusions

We design HyPC-Map, a hybrid memory parallel algorithm
for community detection using information theory based on
Infomap method. HyPC-Map integrates the benefits of both

distributed- and shared-memory parallelism to achieve higher
scalability performance than state-of-the-art techniques. Ad-
ditionally, our algorithm is more efficient while using a single
processing unit than other prominent map-based algorithms
[18], [7]. HyPC-Map achieves significantly higher parallel
performance than other map-based parallel algorithms in
literature. While achieving such speedup, HyPC-Map does
not fall short in maintaining the quality of solution–the
modularity, conductance, and MDL scores demonstrate high
quality of detected communities, which are desirably similar
to sequential Infomap. HyPC-Map may prove useful in
analyzing emerging large-scale social and scientific networks.
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