
Fast Parallel Index Construction for Efficient K-truss-based Local
Community Detection in Large Graphs

Md Abdul Motaleb Faysal

University of Nevada, Las Vegas

Las Vegas, Nevada, USA

faysal@unlv.nevada.edu

Maximilian Bremer

Lawrence Berkeley National Lab

Berkeley, California, USA

mb2010@lbl.gov

Cy Chan

Lawrence Berkeley National Lab

Berkeley, California, USA

cychan@lbl.gov

John Shalf

Lawrence Berkeley National Lab

Berkeley, California, USA

jshalf@lbl.gov

Shaikh Arifuzzaman

University of Nevada, Las Vegas

Las Vegas, Nevada, USA

shaikh.arifuzzaman@unlv.edu

ABSTRACT
Finding cohesive subgraphs is a crucial graph analysis kernel widely

used for social and biological networks (graphs). There exist various

approaches for discovering insightful substructures in a network,

such as finding cliques, community discovery, and truss decom-

position. Finding cliques is a computationally intractable problem,

making it difficult to identify cohesive subgraphs in large graphs.

One possible solution is k-truss decomposition, which is a relaxed

form of finding cliques that can be solved in polynomial time. Fur-

ther, unlike global community detection–which focuses on breaking

down the entire graph into disjoint communities–a local or goal-

oriented community search aims at finding the community of an

entity of interest. In this work, we identify a k-truss-induced com-

munity discovery technique that can detect local communities in

polynomial time. However, most previous studies have explored

k-truss-induced local community formation in a serial setting, mak-

ing them unsuitable for large graphs. In this paper, we design a

parallel k-truss-induced local community construction method us-

ing multi-core parallelism. To the best of our knowledge, this is the

first attempt to parallelize this algorithmic approach with extensive

performance analysis. Our experiments demonstrate a significant

performance improvement, with speedups from 19𝑥 to 55𝑥 for

graphs with hundreds of millions to billions of edges, using NERSC

Perlmutter compute nodes.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; • Mathe-
matics of computing→ Graph algorithms.

KEYWORDS
Graph algorithms, parallel algorithms, k-truss, local community

discovery, large graphs, connected components, sparse graphs

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00

https://doi.org/10.1145/3605573.3605637

ACM Reference Format:
MdAbdulMotaleb Faysal, Maximilian Bremer, CyChan, John Shalf, and Shaikh

Arifuzzaman. 2023. Fast Parallel Index Construction for Efficient K-truss-

based Local Community Detection in Large Graphs. In 52nd International
Conference on Parallel Processing (ICPP 2023), August 7–10, 2023, Salt Lake
City, UT, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3605573.3605637

1 INTRODUCTION
Community discovery is a widely used application for grouping or

clustering entities of similar categories [8, 29, 32, 35, 36]. Some ex-

amples include finding groups of people having similar interests in

social networks, marketing products to groups of consumers based

on their categories, clustering similar kinds of proteins and recog-

nizing the functionality of unknown proteins, web spam detection

in the cyber-security domain, and so on. In numerous real-world

applications, the focus lies on determining the communities to

which an entity (vertex in a graph) belongs, rather than identifying

the independent disjoint communities of the entire graph [1, 22].

For instance, a user in a social network may be interested in the

social groups or communities they participate in rather than all

the communities in the network. This entity-centered personalized

search is more meaningful as the communities a user participates

in represent the social or behavioral context of the user. While

the disjoint community problem usually applies a global criterion

[18, 19] or optimization function to discover all qualified communi-

ties, the overlapping community problem generally constructs and

maintains an index-based structure with an objective to retrieve

community subgraphs containing the query vertex [1]. We refer to

the latter problem as a local or goal-oriented community search. A

key difference between these problems is that in global community

discovery, a vertex belongs to only one community at a time (dis-

joint), whereas in local community discovery, a vertex may belong

to multiple communities simultaneously (overlapping). In Figure

1, we illustrate the community membership for these two kinds of

community discovery problems.

There have been goal-oriented local community discovery mod-

els proposed based on graph motifs such as k-core [5, 34, 42],

clique/quasi clique [12, 44], and k-truss [1, 23, 45]. A k-truss-based

index construction for local community search has merits over

other techniques. For instance, the most obvious cohesive subgraph,

clique [27], has the drawbacks of being very restrictive (every vertex

https://doi.org/10.1145/3605573.3605637
https://doi.org/10.1145/3605573.3605637
https://doi.org/10.1145/3605573.3605637

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Faysal, Bremer, Chan, Shalf, and Arifuzzaman

Disjoint Community Membership Overlapping Community Membership

Figure 1: The left subfigure illustrates the disjoint communi-
ties in oval shapes–a vertex (dark circles) may belong to only
one community. The right subfigure illustrates overlapping
communities where some vertices, marked as dark, belong
to multiple communities simultaneously.

within 1−distance) and too common (small clique) or too rare (large

clique) in a real-world scenario. Moreover, it is not a polynomially

tractable problem [9]. The k-core problem is a generalization of the

clique. Despite being polynomially solvable, the k-core subgraphs
have the disadvantage of lacking cohesion, an important property

of the community subgraph [11]. K-truss, a relaxed form of the

clique, can be computed in polynomial time. K-truss uses a higher-
order graph motif of triangle connectivity as the building block for

the formulation of a community instead of primitive features such

as vertex set or edge set thus enabling a comprehensive model of

multiple overlapping communities.

There are recent studies on k-truss-based goal-oriented commu-

nity search [1, 20, 22]. The main limitation of the contemporary

studies of k-truss-oriented index construction or community search

is the sequential nature of those algorithms. One constituent sub-

problem of this local community search formulation is k-truss de-
composition. The k-truss decomposition is a well-studied problem

for parallel algorithm design. There exist works on parallel k-truss
decomposition in both shared-memory [24, 41, 47] and distributed-

memory [10, 16, 31] settings. There are also GPU-based studies

[2, 14, 46] for k-truss decomposition. The work by Akbas et al. [1]

proposed EquiTruss, a k-truss-based index structure that demon-

strates better performance over TCP-Index proposed by Huang et

al. [22] as a formulation to build the index for the local community

search. Both of those studies are sequential and limited in scalability.

We devise a shared-memory-based parallel algorithm for multicore

setting using EquiTruss formulation that works on large graphs.

We identify that EquiTruss can be computationally expensive for

larger graphs as evident in Figure 2. While there exist parallel algo-

rithms for k-truss decomposition, no known work exists for parallel

EquiTruss. Consequently, in this study, we focus on the scalable

algorithm design for the EquiTruss problem.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Amazon DBLP LiveJournal Orkut

T
im

e
 (

%
)

Network

SupportComp.
TrussDecomp.

EquiTruss

Figure 2: Compute kernel timing breakdown (in percentage)
for our original EquiTruss based implementation. Comput-
ing EquiTruss (shown in yellow) is computationally as ex-
pensive as k-truss decomposition (blue) for large graphs.

We construct EquiTruss in parallel using a connected compo-

nent (CC) algorithm [39], which we refer to as Baseline EquiTruss.
Later, we incorporate cache-optimized storage and extraction of

neighborhood information for better execution time. We refer to

this approach as C-Optimal EquiTruss. Finally, we use a state-of-
the-art sampling-based parallel connected component algorithm

[43] to construct supernode in EquiTruss, which we call Afforest
EquiTruss that outperforms the earlier two versions. We summarize

the contributions of our work as follows:

• We novelly identify the k-triangle-induced index construc-

tion (EquiTruss) as a connected component problem on a

graph in which edges are treated as entities instead of ver-

tices. The connectivity among the edges is established through

k-triangle connectivity.

• We design an OpenMP-based parallel EquiTruss approach
for constructing the supergraph (index) without any loss

of accuracy. To our knowledge, our novel algorithm is the

first parallel algorithm for building such index structures to

facilitate local community search.

• For our parallel EquiTruss implementations, we use state-of-

the-art connected components approach, Afforest [43] and

the prior state-of-the-art connected component approach,

Shiloach-Vishkin (SV) [39]. We present a comparative analy-

sis of the performance using these approaches.

• We construct the supergraph in a combination of parallel

supernode and parallel superedge formulation resulting in

up to 30× speedup in NERSC Perlmutter compute node com-

pared to the sequential counterpart and up to 55× speedup

compared to the Baseline EquiTruss.

2 BACKGROUND
Our parallel algorithm design is based on the serial EquiTruss [1]
approach. We describe the notations used throughout this paper in

Table 1. Then, in Table 2, we list all of our different implementations

of EquiTruss. We present a few relevant definitions next, followed

by a discussion of EquiTruss index construction strategy.

2.1 Preliminaries
The problem of EquiTruss index construction for an online commu-

nity search considers the graph 𝐺 (𝑉 , 𝐸) to be simple, undirected,

and unweighted with the number of vertices |𝑉 | and the number

of edges |𝐸 |. Below are some definitions relevant to the context of

EquiTruss.

Definition 1 (Triangle [3]). Given vertices𝑢, 𝑣 , and𝑤 s.t. (𝑢, 𝑣),
(𝑣,𝑤), and (𝑢,𝑤) are edges in 𝐸, a triangle Δ is a set of these three
edges forming a cycle, i.e., Δ = {(𝑢, 𝑣), (𝑣,𝑤) (𝑢,𝑤)} ⊆ 𝐸.

Definition 2 (Support). The support of an edge, 𝑒 , is the number
of triangle(s) having 𝑒 as their constituent edge. We denote the support
of 𝑒 as |Δ|𝑒 or support(e).

Definition 3 (k-truss). A k-truss is a subgraph such that each
edge has a support of at least 𝑘 − 2 within the subgraph. Formally,
given a subgraph 𝐺 ′ (𝑉 ′, 𝐸′) ⊆ 𝐺 , 𝐺 ′ is a k-truss if |Δ|𝑒 ≥ 𝑘 − 2

for all 𝑒 ∈ 𝐸′. A maximal k-truss is a k-truss that is not a proper
subgraph of another k-truss: formally, there exists no subgraph 𝐺 ′′

such that 𝐺 ′ and 𝐺 ′′ are k-trusses and 𝐺 ′ ⊊ 𝐺 ′′.

Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large Graphs ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

Table 1: Notations and abbreviations used in this paper.

Notation Description

G (V, E) A simple undirected graph, G

G(V,E) A summary/supergraph G
V Set of supernode(s)

E An edge list of superedge(s)

𝜏 A dictionary storing trussness for edge 𝑒 ∈ 𝐸
Π A dict. for parent component ID of 𝑒 ∈ 𝐸
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑒), |Δ|𝑒 No. triangles having 𝑒 as their constituent edge

𝑘 Trussness of an edge

Φ𝑘 An edge set of same trussness 𝑘

𝜈 A supernode satisfying 𝑘-triangle connectivity

Δ𝑠 ↔ Δ𝑡 Δ𝑠 and Δ𝑡 are triangle connected
𝑒 ↔ 𝑒′ Edges 𝑒 and 𝑒′ are triangle connected

𝑒
𝑘↔𝑒′ Edges 𝑒 and 𝑒′ are k-triangle connected

CC Connected Component

SV Shiloach-Vishkin algorithm

LP Label Propagation algorithm

Table 2: Naming of different algorithmic implementations.

Name Description

Original EquiTruss Our C++ implementation based on work [1]

Baseline EquiTruss Our shared-memory-parallel EquiTruss
based on Shiloach-Vishkin CC algorithm

C-Optimal EquiTruss Our memory and computation optimized

EquiTruss from its predecessor Baseline

Afforest EquiTruss Our shared-memory-parallel EquiTruss
based on Afforest [43] CC algorithm

Definition 4 (Trussness). Given an edge 𝑒 ∈ 𝐸, the trussness
of an edge, 𝜏 (𝑒) is defined to be the largest 𝑘 such that there exists a
k-truss in 𝐺 that contains 𝑒 . The trussness of a graph 𝜏 (𝐺) is defined
as min𝑒∈𝐸 𝜏 (𝑒).

Definition 5 (Triangle Adjacency). Two triangles Δ1 and Δ2

are adjacent if they share a common edge, i.e., Δ1 ∩ Δ2 ≠ ∅.

Definition 6 (Triangle Connectivity). Given 2 triangles Δ𝑠
and Δ𝑡 within 𝐺 , they are triangle connected, i.e., Δ𝑠 ↔ Δ𝑡 if there
exists a sequence of triangles, Δ1, . . . ,Δ𝑛 in 𝐺 with 𝑛 ≥ 2 such that
Δ1 = Δ𝑠 , Δ𝑛 = Δ𝑡 , and for 1 ≤ 𝑖 < 𝑛, Δ𝑖 ∩ Δ𝑖+1 ≠ ∅. If 𝑒 ∈ Δ𝑠 and
𝑒′ ∈ Δ𝑡 , then 𝑒, 𝑒′ are triangle connected or 𝑒 ↔ 𝑒′. If all edges in the

path between 𝑒 ↔ 𝑒′ have trussness of k, then 𝑒
𝑘↔ 𝑒′.

Definition 7 (k-truss Community). For an integer 𝑘 ≥ 3, a
subgraph𝐺 ′ ⊆ 𝐺 is a k-truss community if𝐺 ′ is a k-truss and for all

𝑒, 𝑒′ ∈ 𝐸′, 𝑒 𝑘↔ 𝑒′.

The goal of the EquiTruss algorithm is to create a summary
graph G(V,E) that will enable the fast construction of the k-truss

communities associated with a given vertex.

Definition 8 (Supernode). A supernode 𝜈 ∈ V is a set of edges
in 𝐸 such that

(1) For all 𝑒1, 𝑒2 ∈ 𝜈 , 𝜏 (𝑒1) = 𝜏 (𝑒2),

(2) For all 𝑒1, 𝑒2 ∈ 𝜈 , 𝑒1 ↔ 𝑒2 in the maximal k-truss of 𝐺 ,
(3) The supernode 𝜈 is maximal, i.e., there does not exist an edge

𝑒 ∈ 𝐺 \ 𝜈 such that 𝜏 (𝑒) = 𝜏 (𝜈) and 𝑒 ↔ 𝜈 .

Note that due to the maximality requirement of the supernodes,

the set of supernodes V partitions 𝐸.

Definition 9 (Superedge). Given supernodes 𝜈1, 𝜈2 ∈ V, we say
there exists a superedge between them if 𝜈1 ↔ 𝜈2 in the 𝜅-truss where
𝜅 = min(𝜏 (𝜈1), 𝜏 (𝜈2)) and 𝜏 (𝜈1) ≠ 𝜏 (𝜈2).

2.2 Index Construction Method
Here we discuss the index construction phase of the EquiTruss
approach. The pseudocode is presented in Algorithm 1. The con-

structed index is the main data structure to retrieve all the com-

munities of a query entity (vertex). Algorithm 1 receives a graph

𝐺 (𝑉 , 𝐸) and returns a supergraph with supernodes connected by

superedges. The supernodes are groups of edges formed by follow-

ing the condition of k-triangle connectivity. Aside from the input

graph 𝐺 (𝑉 , 𝐸), a dictionary of edges, 𝜏 , with their corresponding

k-trussness pre-computed by a k-truss decomposition technique

is also taken as input. The initialization for all edges takes place

between ln. 1 − 5 in Algorithm 1 where a list (initially empty) of

supernode IDs are maintained for superedge computation in a later

phase of the algorithm. The entire edge set 𝐸 is grouped into subsets

based on their corresponding trussness, 𝑘 (ln. 4 − 5). All of those
subsets of edges of different trussnesses are traversed in an iterative

fashion (ln. 7) starting from 𝑘𝑚𝑖𝑛 ≥ 3 to 𝑘𝑚𝑎𝑥 . For an edge set, Φ𝑘
of certain trussness, 𝑘 , edges are fetched (ln. 8), constructed to a

supernode with supernode ID chronologically assigned, and added

to the set of supernodes,V (ln. 9−11). For an edge in a supernode, 𝜈 ,

a Breadth First Traversal (BFS) is performed to connect other edges

belonging to that supernode following k-triangle connectivity (ln.

13 − 24), i.e., all edges that are triangle connected with the current

edge 𝑒 having the same trussness, 𝑘 of 𝑒 are added to the supernode

𝜈 containing 𝑒 . Ln. 20 − 23 and ln. 26 − 29 of Algorithm 1 describe

this process. For an edge, 𝑒′ forming k-triangle connectivity with

𝑒 and 𝜏 (𝑒′) > 𝑘 , an entry is added to the list of the supernode(s)

that 𝑒 is connected to (ln. 31 − 32). When 𝑒′’s list of the supernode
is processed, a superedge entry is created connecting the supern-

ode containing 𝑒′ to the supernode containing 𝑒 (ln. 17 − 19). An
illustrative example of supernode, superedge, and summary graph

structure is presented in Figure 3.

3 METHODOLOGY
3.1 Overview of the parallel algorithm
We break down our parallel index construction method into three

different algorithmic snippets. Algorithm 2 discusses the design of

creating the set of supernodes in parallel. Then in Algorithm 3, we

discuss our parallel algorithm design to create the set of superedges

E. Finally, in Algorithm 4, we discuss our parallel approach to

creating the supergraph G(V,E).
Creating Supernode: In Algorithm 2, we demonstrate supernode

creation using Shiloach-Vishkin (SV) [39] approach to parallel CC.

While there are other approaches for parallel CC such as Label

Propagation [33, 50] or BFS, we select SV [39] for running our edge-

induced CC to form supernodes. SV has linear work efficiency as

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Faysal, Bremer, Chan, Shalf, and Arifuzzaman

1

0

2

3 6

54

8

7

9

10

3-truss edge
4-truss edge
5-truss edge

(a)

ν1

ν0

ν2

ν3

ν4

(0, 4)

ν0 (k = 3) ν1 (k = 4)

(0, 1), (0, 2), (0, 3)
(1, 2), (1, 3), (2, 3)

(2, 6), (2, 8)

ν2 (k = 3) ν3 (k = 4)

(3, 4), (3, 5), (3, 6), (4, 5)
(4, 6), (5, 6), (5, 7), (5, 10)

ν4 (k = 5)

(6, 7), (6, 8), (6, 9), (6, 10), (7, 8)
(7, 9), (7, 10), (8, 9), (8, 10), (9, 10)

(b)

Figure 3: Illustration of how the summary graph is constructed by a sample graph example presented in [1]. Figure 3a depicts
the group of edges with different k-trussness values with different colors. For instance, the blue marked edges are the members
of the 4-truss subgraph but not the 5-truss subgraph. Following Definition 8, supernodes 𝜈0, 𝜈1, 𝜈2, 𝜈3, and 𝜈4 are constructed as
shown in Figure 3b. Superedges are formed between those supernodes following Definition 9.

LP but is independent of the graph diameter (D). Variants [6, 40] of

parallel CC using BFS have linear work efficiency, but parallelism

is limited by the increasing number of connected components. It

is important to note that, our edge-based CC with a composition

of k-triangle connectivity fits nicely with the formulation of SV to

establish supernodes. Furthermore, we experiment with a cache-

optimized variant of SV and the state-of-the-art CC approach, Af-

forest [43] to demonstrate better run time both in sequential and

parallel executions.

Algorithm 2 receives the original graph 𝐺 (𝑉 , 𝐸) and a dictio-

nary of edges with their 𝑘-trussness, 𝜏 . The algorithm starts with

initializing each edge to its own parent component (ln. 1 − 2) and
grouping edges based on their trussness (ln. 3 − 5). Similar to Algo-

rithm 1, all different subsets of edges based on their trussness are

processed iteratively from 𝑘𝑚𝑖𝑛 ≥ 3 to 𝑘𝑚𝑎𝑥 (ln. 6). All edges under

certain truss groups are processed in parallel (ln. 10) to find the

other edges forming triangles with edge 𝑒 (𝑢, 𝑣) (ln. 11). We adopted

the SV approach because it is highly amenable to parallelism and

theoretically works well independent of graph topology [43]. The

SV has two phases that alternate, hooking and shortcut. The hook-
ing phase (ln. 12 − 20) connects the edge 𝑒1 (ln. 16) to the same

parent component of 𝑒 if the condition for 𝑘 − 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 connectivity
(ln. 15) is satisfied. Similar action is done for edge 𝑒2 (ln. 18 − 19).
In either case, the boolean variable ℎ𝑜𝑜𝑘𝑖𝑛𝑔 is set (ln. 17, 20) for a

successful attempt to connect the edge to the parent component of

𝑒 to run another round of hooking and shortcut phases. The shortcut
phase (ln. 21 − 23) is run on parallel across all edges in a Φ𝑘 set

with continuous linking up (ln. 22− 23) to the parent until all edges
under a specific component are directly connected to the root. It is

important to note that, both the hooking and the shortcut phases
have a benign race condition that does not affect the correctness.

Creating Superedge: Algorithm 3 shows the design aspects of cre-

ating superedges in parallel. A list/vector of subsets of superedges is

allocated (ln. 1) with a size equal to the number of available parallel

threads. Each thread can add to its own subset of superedge(s) and

thereby avoid race conditions. Both Algorithm 2 and Algorithm 3

are invoked consecutively upon the same Φ𝑘 set. All edges of the

Φ𝑘 set are processed in parallel to find their triangle composing

edges (𝑒1 and 𝑒2), retrieve their trussness from 𝜏 and compute the

minimum of trussness (ln. 3 − 8). A superedge is established be-

tween the supernode containing current edge 𝑒 with trussness 𝑘

to the supernode containing the edge 𝑒1, or 𝑒2 having a minimum

trussness 𝑘1 < 𝑘 , or 𝑘2 < 𝑘 . A thread creating a superedge adds it

to its subset of superedge(s) (ln. 10, 12).

Creating Supergraph (Index): In Algorithm 4, we discuss the

parallel merging of the thread local subset of superedge(s) con-

structed in Algorithm 3 to create the supergraph G(V,E). A list

𝑠𝑚_𝑔𝑟𝑎𝑝ℎ of the size of the total number of threads is allocated (ln.

1). Each thread has a thread-local vector of vectors of superedge

{ID1, ID2}, sm_graph_t (ln. 6) where the outer vector has vector en-
tries equal to the total number of threads, and ID1 and ID2 represent
the supernode IDs. All of the superedges of each thread-local subset

constructed in Algorithm 3 are hashed to the vector corresponding

to a destination thread (ln. 7 − 11). Each thread then combines (ln.

13−14) all of its corresponding superedges annotated by all threads
into combined_sm_graph_t allocated in ln. 2 and removes duplicates

(ln. 15−16). Finally, all threads merge their superedge(s) to the final

supergraph (ln. 19).

3.2 Algorithm Complexity Analysis
Computing support/triangle has the best time complexity ofO(|𝐸 |1.5)
[37]. Algorithm 1 compute supernode(s) using BFS. BFS has a time

complexity of O(|𝑉 | + |𝐸 |) for a graph𝐺 (𝑉 , 𝐸) with number of ver-

tices |𝑉 | and number of edges |𝐸 |. However, for the edge-induced
graph of EquiTruss, the constituent component of supernodes are

edges of the original graph𝐺 (𝑉 , 𝐸). Therefore, the time complexity

is O(|𝐸 | + |𝐸 |1.5) where |𝐸 |1.5 is the maximum number of triangles

possible for a graph with |𝐸 | edges [17]. The time complexity of the

CRCW (concurrent read, concurrent write) based Shiloach-Vishkin

CC is O(|𝐸 | log |𝑉 |𝑝 + log |𝑉 |) for 𝑝 parallel processing units [21]. In

case of Algorithm 2 for the edge-induced graph of EquiTruss, the

time complexity using 𝑝-thread is O(|𝐸 |
1.5

log |𝐸 |
𝑝 + log |𝐸 |). Most of

the component identification work happens for Afforest propor-

tional to O(|𝑉 |) [43]. The edge-induced graph of EquiTruss would
take O(|𝐸 |) time and an additional O(|𝐸 |1.5) time complexity to

compute triangles. Therefore, the time complexity is O(|𝐸 |
1.5+|𝐸 |
𝑝)

for 𝑝 parallel units. The space requirement for both groups of Al-

gorithm 1 and Algorithm 2, 3, 4 is proportional to the number of

edges in the original graph 𝐺 (𝑉 , 𝐸), i.e, O(|𝐸 |) for storing relevant

dictionary and data structure and an additional memory require-

ment for storing the summary graph G(V,E) is O(|E|), therefore,
O(|𝐸 | + |E|) in total.

Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large Graphs ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

Algorithm 1: Construct Index for EquiTruss
Data: A graph, 𝐺 (𝑉 , 𝐸) and a dictionary of edges, 𝜏 , with

their k-truss values

Result: A supergraph, EquiTruss: G(V,E)
1 for 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
2 𝑒.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝐹𝐴𝐿𝑆𝐸

3 𝑒.𝑙𝑖𝑠𝑡 ← ∅
4 if (𝜏 (𝑒) = 𝑘) then
5 Φ𝑘 ← Φ𝑘 ∪ 𝑒

6 𝑠𝑝𝑁𝑑𝐼𝐷 ← 0

7 for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do
8 while (∃𝑒 ∈ Φ𝑘) do
9 𝑒.𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑇𝑅𝑈𝐸

10 Create a supernode 𝜈 , where

𝜈.𝑠𝑝𝑁𝑑𝐼𝐷 ← 𝑠𝑝𝑁𝑑𝐼𝐷 + +
11 V← V ∪ {𝜈}
12 Initialize an empty queue, 𝑄

13 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑒)
14 while (𝑄 ≠ ∅) do
15 𝑒 (𝑢, 𝑣) ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
16 𝜈 ← 𝜈 ∪ {𝑒}
17 for 𝐼𝐷 ∈ 𝑒.𝑙𝑖𝑠𝑡 do
18 Create a superedge (𝜈, 𝜇), where 𝜇 is an

existing supernode with 𝜇.𝑠𝑝𝑁𝑑𝐼𝐷 = 𝐼𝐷

19 E← E ∪ {(𝜈, 𝜇)}
20 for𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
21 if 𝜏 (𝑢,𝑤) ≥ 𝑘 and 𝜏 (𝑣,𝑤) ≥ 𝑘 then
22 ProcessEdge((u, w), spNdID, Q)

23 ProcessEdge((v, w), spNdID, Q)

24 Φ𝑘 ← Φ𝑘 − {𝑒}

25 Procedure ProcessEdge((𝑢, 𝑣), 𝑠𝑝𝑁𝑑𝐼𝐷, &𝑄)
26 if (𝜏 (𝑢, 𝑣) = 𝑘) then
27 if (𝑢, 𝑣) .𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝐹𝐴𝐿𝑆𝐸 then
28 (𝑢, 𝑣).𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ← 𝑇𝑅𝑈𝐸

29 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 ((𝑢, 𝑣))

30 else
31 if (𝑠𝑝𝑁𝑑𝐼𝐷 ∉ (𝑢, 𝑣) .𝑙𝑖𝑠𝑡) then
32 (𝑢, 𝑣).𝑙𝑖𝑠𝑡 ← (𝑢, 𝑣).𝑙𝑖𝑠𝑡 ∪ {𝑠𝑝𝑁𝑑𝐼𝐷}

3.3 Optimization of Compute Kernel
We break down our Baseline EquiTruss implementation into several

compute kernels (illustration in section 4). The compute kernels are

Support, Initialization, SpNode, SpEdge, SmGraph, and SpNodeRemap.
We identify SpNode (described in Algorithm 2) as themost expensive

kernel and aim to improve it by incorporating a few optimizations.

We use the CSRGraph class from GAP Benchmark Suite [7] for effi-

cient storage and operations. Instead of searching for the trussness

(𝑘) on the entire edge set in a dictionary/hashmap for an edge (ln.

4, 15, 18 in Algorithm 2), the search space is reduced to only the

neighborhood list by CSR storage from GAP. The dictionary to store

Algorithm 2: Construct SuperNode(s) in parallel

Data: A graph 𝐺 (𝑉 , 𝐸) and a dictionary of edges with their

k-truss values

Result: A dictionary of edges, Π, with each edge having

their supernode ID/parent component ID assigned

/★ Each edge initially forms its own component ★/
1 for 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
2 Π(𝑒) ← 𝑒

/★Group edge set, E, into different subsets based on
their trussness, e.g., 𝑘 = 3, 4, . . . , 𝑘𝑚𝑎𝑥 ★/

3 for 𝑒 (𝑢, 𝑣) ∈ 𝐸 do
4 if (𝜏 (𝑒) = 𝑘) then
5 Φ𝑘 ← Φ𝑘 ∪ 𝑒

/★Run ShiloachVishkin (SV) connected component
for each Φ𝑘 set ★/

6 for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘𝑚𝑎𝑥 do
7 ℎ𝑜𝑜𝑘𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒

8 while (ℎ𝑜𝑜𝑘𝑖𝑛𝑔) do
9 ℎ𝑜𝑜𝑘𝑖𝑛𝑔← 𝑓 𝑎𝑙𝑠𝑒

/★Hooking phase for SV ★/
10 for 𝑒 (𝑢, 𝑣) ∈ Φ𝑘 in parallel do
11 Compute a list of all common neighbors,W, that

make triangle(s) with 𝑒

12 for (𝑤 ∈𝑊) in parallel do
13 𝑒1 ← (𝑢,𝑤) ∈ 𝐸
14 𝑒2 ← (𝑣,𝑤) ∈ 𝐸
15 if (Π(𝑒) < Π(𝑒1) and Π(𝑒1) = Π(Π(𝑒1)) and

𝜏 (𝑒) = 𝜏 (𝑒1)) then
16 Π(Π(𝑒1)) ← Π(𝑒)
17 ℎ𝑜𝑜𝑘𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒

18 if (Π(𝑒) < Π(𝑒2) and Π(𝑒2) = Π(Π(𝑒2)) and
𝜏 (𝑒) = 𝜏 (𝑒2)) then

19 Π(Π(𝑒2)) ← Π(𝑒)
20 ℎ𝑜𝑜𝑘𝑖𝑛𝑔← 𝑡𝑟𝑢𝑒

/★ Shortcut phase for SV ★/
21 for 𝑒 ∈ Φ(𝑘) in parallel do
22 while (Π(Π(𝑒)) ≠ Π(𝑒)) do
23 Π(𝑒) ← Π(Π(𝑒))

and retrieve parent component/supernode ID for the entire edge set

has been replaced from a hashmap to a contiguous memory buffer.

The Shiloach-Vishkin connected component (CC) design from

GAP has been adapted to deal with our special situation where we

treat an edge to be an entity in the connected component instead

of the usual vertex in SV connected component. The SV adaptation

skip further processing if Π(𝑒) = Π(𝑒1) (ln. 15 or 18 in Algorithm

2). This resulted in an optimal design of SpNode construction by the

Shiloach-Vishkin CC algorithm. We name it SpNode C-Optimal. SV
algorithm for CC was improved by Afforest [43] by modifying the

convergence logic to be applied separately to different subgraphs. It

utilizes component approximation by subgraph sampling to reduce

the number of edge processing while obtaining the exact solution.

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Faysal, Bremer, Chan, Shalf, and Arifuzzaman

Algorithm 3: Create SuperEdge(s) in parallel

Data: Φ(𝑘) set of current 𝑘 from Algo. 2

Result: A vector/list of thread local superedge subsets

1 Allocate vector<set<compID1, compID2≫sp_edges, a
vector of size = number of threads

2 for 𝑒 (𝑢, 𝑣) ∈ Φ(𝑘) in parallel do
/★W is the list of neighbor(s) forming triangle(s)
with 𝑒 ★/

3 for𝑤 ∈𝑊 in parallel do
4 𝑡𝑖𝑑 ← 𝑔𝑒𝑡_𝑡ℎ𝑟𝑒𝑎𝑑_𝑖𝑑

5 𝑒1 ← (𝑢,𝑤) ∈ 𝐸
6 𝑒2 ← (𝑣,𝑤) ∈ 𝐸
7 𝑘 ← 𝜏 (𝑒), 𝑘1 ← 𝜏 (𝑒1), 𝑘2 ← 𝜏 (𝑒2)
8 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 ←𝑚𝑖𝑛(𝑘, 𝑘1, 𝑘2)

/★Create superedge downward, 𝑘 > 𝑘1 ★/
9 if 𝑘 > 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 and 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 = 𝑘1 then
10 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠 [𝑡𝑖𝑑] .𝑖𝑛𝑠𝑒𝑟𝑡 ({Π(𝑒1),Π(𝑒)})

/★Create superedge downward, 𝑘 > 𝑘2 ★/
11 if 𝑘 > 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 and 𝑙𝑜𝑤𝑒𝑠𝑡_𝑘 = 𝑘2 then
12 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠 [𝑡𝑖𝑑] .𝑖𝑛𝑠𝑒𝑟𝑡 ({Π(𝑒2),Π(𝑒)})

The two phases of the original SV algorithm (hooking and shortcut)
are modified by the corresponding link and compress phases to
avoid overriding work by concurrent parallel units. Similar to the

SpNode C-Optimal, we adapted the Afforest implementation from

GAP to run our special case of the connected component algorithm.

4 PERFORMANCE EVALUATION
4.1 Experimental Settings
We implemented our algorithm using C++ programming language,

OpenMP frameworks for multi-threading, and GNU g++ compiler

for building the code. We used Perlmutter CPU compute node from

National Energy Research Scientific Computing Center (NERSC).

The CPU node consists of 2 AMD EPYC 7763 CPUs, 64 cores per

CPU with base frequency 2.45GHz, 512 GB of DDR4 memory, and

204.8 GB/s memory bandwidth per CPU. The undirected network

data sets listed in Table 3 are collected from SNAP [26].

4.2 Effect of Compute Kernel Optimization
Figure 4 illustrates the time percentage breakdown of operational

kernels for different networks for the parallel EquiTruss. It is evi-
dent that constructing supernodes (SpNode in Figure 4) is the most

expensive part of the overall algorithm. This kernel takes as much

as 79% for the YouTube network and 87% for the Orkut network,
respectively, of the overall index construction time. The second

most expensive kernel is the superedge creation as described in

Algorithm 3 ranging from as little as 6% for the DBLP network to

10% for the YouTube network of the overall time.

Figure 5 illustrates the performance improvement in terms of

speedup for Algorithm 2 from the SpNode Baseline to SpNode C-
Optimal to finally SpNode Afforest because of our optimizations. We

observe the supernode construction time significantly reduces from

8655 seconds in Baseline to 2093 seconds in SpNode Aff. and 4371

seconds in SpNode C-Opt. resulting in 4.13× and 1.98× speedup,

Algorithm 4: Construct SuperGraph in parallel

Data: A vector/list of thread local superedge subsets

sp_edges from Algo. 3

Result: A complete list of superedges from merging thread

local superedge subsets

1 Allocate, a list sm_graph of size = num_threads

2 Allocate vector<vector<{ID1, ID2}
≫combined_sm_graph_t(num_threads)

3 Allocate a contiguous buffer, final_sp_graph, of type
<ID1, ID2>and size = total_num_sp_edges

4 Inside each thread 𝑡 in parallel

5 {
6 Allocate thread-local vector<vector<{ID1, ID2}≫

sm_graph_t(num_threads)

7 for each 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒 ∈ 𝑠𝑝_𝑒𝑑𝑔𝑒𝑠 [𝑡] do
8 𝐼𝐷1← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒.𝐼𝐷1

9 𝐼𝐷2← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒.𝐼𝐷2

10 𝑑𝑒𝑠𝑡_𝑡 ← (ℎ𝑎𝑠ℎ(𝐼𝐷1, 𝐼𝐷2))%𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠

11 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡 [𝑑𝑒𝑠𝑡_𝑡] ← 𝑠𝑢𝑝𝑒𝑟𝑒𝑑𝑔𝑒

12 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ[𝑡] ← 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡

13 for 𝑠𝑚_𝑡 ∈ 𝑠𝑚_𝑔𝑟𝑎𝑝ℎ do
14 Copy all 𝑠𝑚_𝑡 [𝑡] into 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡 [𝑡]
15 sort 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡 [𝑡]
16 remove duplicates from 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡 [𝑡]

/★ Parallel reduction ★/
17 𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚_𝑠𝑝_𝑒𝑑𝑔𝑒𝑠 +=

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑠𝑚_𝑔𝑟𝑎𝑝ℎ_𝑡 [𝑡] .𝑠𝑖𝑧𝑒 ()
18 }
19 Merge combined_sm_graph_t[t] into final_sp_graph in

parallel

Table 3: Network dataset for our experiments. We used sev-
eral social and information networks.

Network # Vertices # Edges

Amazon 334863 925872

DBLP 317080 1049866

YouTube 1134890 2987624

LiveJournal 3997962 34681189

Orkut 3072441 117185083

Friendster 65608366 1806067135

respectively, for the Orkut network in a single-thread execution.

The optimization of Afforest for CC over SV delivered significantly

better performance as observed from the blue bar in Figure 5. Simi-

larly, for the LiveJournal network, the supernode construction time

reduces to 453 seconds in SpNode Aff. and to 696 seconds in SpNode
C-Opt. from the Baseline SpNode computation time of 1393 seconds

resulting in 3.07× and 2× speedup, respectively.

4.3 Performance Analysis
Comparison with State-of-the-art: We obtained the original

Java implementation of the sequential EquiTruss by Akbas et al.

[1] to perform a horizontal comparison with our implementations.

Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large Graphs ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Orkut LiveJournal YouTube DBLP

T
im

e
 (

%
)

Network

Support
Init

SpNode
SpEdge

SmGraph
SpNodeRemap

Figure 4: The operational kernels for the Baseline implemen-
tation of the parallel EquiTruss algorithm. The percentage
(%) breakdown of single-thread run time for 4 different net-
works is illustrated. It is evident that the SpNode kernel is
the major portion (79 − 89)% of the execution time.

 0

 1

 2

 3

 4

 5

Orkut LiveJournal YouTube DBLP

S
p
e
e
d
u
p

Network

SpNode Baseline
SpNode C-Opt.

SpNode Aff.

1 1 1 1

1.98 2.0 2.07

1.66

4.13

3.07

3.62

2

Figure 5: Runtime improvement in single-threaded execu-
tion in terms of speedup of the major operational kernel of
EquiTruss using cache-optimized data structure and Afforest
connected component algorithm.
We present the run time comparison in Table 4. For the LiveJour-
nal network, the index construction phase (SpNd, SpEdge, and

SmGraph) of the serial java code is 3.3× faster than our Baseline,

1.8× faster than C-Opt. EquiTruss, and 1.3× faster than Afforest

EquiTruss in sequential settings. Our parallel (128-thread) versions

are 11.55× faster (Baseline), 20.59× faster (C-Opt. EquiTruss), and

29.56× faster (Afforest EquiTruss), respectively, than the sequential

Java implementation. For larger networks (e.g., Orkut with 117𝑀

edges), the sequential Java code runs out of memory while all of

our implementations in Table 4 can process billion-size graphs

(e.g. com-Frienster). For measuring the accuracy of the constructed

supernodes or supergraphs, we compared the total number and

constituent components (constituent edges) of supernodes and su-

peredges of the sequential Java code by Akbas et al. [1] against

our implementations in both sequential and parallel settings. The

results are identical in all cases. EquiTruss or parallel EquiTruss
depends on deterministic sub-kernels: k-truss connected compo-

nents. Since there is no approximation involved at any stage, the

formulation of the k-triangle connectivity ensures the exactness of

the connected components (supernodes). Therefore, we only report

the number of supernodes and superedges in Table 5 and do not

dedicate additional space to report accuracy which is 100% for all

cases.

Speedup: We list the number of supernodes and superedges in the

summary graph along with speedup gain for our parallel Baseline
EquiTruss, an optimized version over Baseline C-Opt. EquiTruss,

and Afforest EquiTruss in Table 5. The speedup gain for the Baseline
is 13.92×, 27.31×, and 29.63× for YouTube, LiveJournal, and Orkut
networks, respectively. The C-Opt. EquiTruss exhibits 8.82×, 22.25×,
and 22.61× speedup over the sequential (single-threaded) counter-

part for YouTube, LiveJournal, and Orkut networks, respectively.
Finally, using the Aff. EquiTruss, we observe 7.06×, 19.55×, and
18.27× speedup over the sequential (single-threaded) counterpart

for YouTube, LiveJournal, and Orkut networks, respectively. In all

of those cases, the maximum speedup is observed for using the

maximum number of threads (i.e., physical cores) in a compute

node which is 128. The Baseline version delivers better speedup as

this is the less efficient one performing more computation than the

other 2 versions. It is important to note that the Baseline version still
has a significantly lower run-time than our C++ implementation of

EquiTruss based on Akbas et al. [1] (Original EquiTruss in Table 2).

If we just consider the speedup gain from the sequential Baseline
to our final optimized version (Aff. EquiTruss) with 128 threads, it

would be 16.10×, 47.8×, and 55.24× for YouTube, LiveJournal, and
Orkut networks, respectively. These are significant speedup gains

using our parallel implementation over the sequential versions.

Strong Scalability: Figure 6 illustrates the strong scalability plots

for the increasing number of threads from 1 to 128. There are 3

different curves under each sub-Figure representing the scalability

for 3 different design phases (Baseline EquiTruss, C-Opt. EquiTruss,
and Aff. EquiTruss) of the parallel EquiTruss problem. The execution

time reduces from 3283 seconds to 179 seconds with Aff. EquiTruss
by using 128 threads shown in Figure 6a for the Orkut network.
Similarly, the execution time scalabilities are shown for LiveJour-
nal network in Figure 6b for the 3 different design phases of the

EquiTruss problem. The run time reduces from 895 seconds using

a single thread to 40 seconds using 128 threads for the C-Opt. Eq-
uiTruss (blue curve) in Figure 6b. And finally, the execution time

reduces from 36.56 seconds to 2.62 seconds for the YouTube network
as shown in Figure 6c using the Baseline version of EquiTruss. Fig-
ure 7 demonstrates strong scalability for the SpNode construction
run-time for the billion-size Friendster network. Here we only show
the SpNode construction cost due to the maximum 12 hours of node

occupancy limit in a regular compute node in NERSC Perlmutter
supercomputer. In Figure 7, the SpNode computation time using

C-Opt. EquiTruss cannot be shown for single-thread and 2-thread

due to the occupancy hour limit. In Figure 8, we show the run-time

reduction for the 3 major kernels as described in Algorithm 2, 3,

and 4 for our 3 different versions of the parallel EquiTruss using 1,
8, 32, and 128 threads respectively. The SpNode kernel (light purple)
dominates over the other 2 kernels SpEdge (light green) and Sm-
Graph (light blue) in a single thread. However, it starts to decrease

significantly along with the other 2 kernels as we increase the num-

ber of parallel threads and becomes really small in 128 threads for

both the example networks (Figure 8a and 8b).

Parallel Efficiency: Figure 9 illustrates the parallel efficiency for

3 different networks using histogram plots. The parallel efficiency

(𝜀) of an algorithm compares the parallel run time to the sequential

run time assuming perfect scalability [4]. To formulate, parallel

efficiency 𝜀 =
𝑇𝑠𝑒𝑞

𝑝𝑇 (𝑝) , where 𝑝 is the number of parallel units, 𝑇 (𝑝)
is the time with 𝑝 parallel units, and 𝑇𝑠𝑒𝑞 is the sequential run

time. In each plot, there are 3 histogram bars grouped together

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Faysal, Bremer, Chan, Shalf, and Arifuzzaman

Table 4: Comparing the combined run time of the major computational phases (SpNd, SpEdge, and SmGraph) for Index
construction. The comparison is performed in single-threaded settings between our implementations and the original Java
implementation by Akbas et al. [1].

Network Baseline (sec) C-Opt. EquiTruss (sec) Aff. EquiTruss (sec) Akbas et al. [1] (sec)

Amazon 6.77 3.96 3.24 1.46

DBLP 10.92 7.37 6.57 2.33

LiveJournal 1549 851 608 467

Orkut 9631 5268 2990 MLE

Table 5: The number of supernodes and superedges in summary graphs for different networks. Comparison of the slowest
execution time (1-thread) to faster execution time (128-thread) in seconds and the corresponding speedup for different versions
of our parallel EquiTruss implementation.

No. of No. of Base. Eq. C-Opt. Eq. Aff. Eq.
Network Sp nodes Sp edges 1-t(s) 128-t(s) Speedup 1-t(s) 128-t(s) Speedup 1-t(s) 128-t(s) Speedup

Amazn. 115060 103513 7.26 0.52 13.86 4.45 0.46 9.7 3.74 0.40 9.16

DBLP 126904 105409 11.52 0.62 18.53 7.96 0.51 15.52 7.16 0.49 14.46

YouTb. 400408 940550 36.56 2.62 13.92 21.60 2.44 8.82 16.07 2.27 7.06

LvJrnl. 4765102 13405280 1593.43 58.34 27.31 895.03 40.21 22.25 651.69 33.33 19.55

Orkut 17227001 76631446 9924.57 334.89 29.63 5561.59 245.97 22.61 3283.14 179.64 18.27

0
.5k
1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(a) Orkut

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(b) LiveJournal

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(c) YouTube
Figure 6: Illustrating runtime reduction and scalability using 3 different design phases of the parallel EquiTruss for 3 different
networks. For instance, the execution times reduce from 9924, 5561, and 3283 seconds to 334, 245, and 179 seconds, respectively,
for baseline EquiTruss, C-Opt. EquiTruss, and Afforest EquiTruss using 128 threads for the Orkut network (Figure 6a).

0
1k

5k

10k

15k

20k

25k

30k

35k

 1 2 4 8 16 32 64 128

E
x
e
cu

ti
o
n
 T

im
e
 (

se
c)

No. of Threads

SpNode (C-Opt. Eq.)
SpNode (Aff. Eq.)

Figure 7: Execution time for the SpNode kernel for billion-
size Friendster network usingC-Opt. EquiTruss andAff. Equi-
Truss. For the Aff. EuiTruss, single thread run-time of 34332
seconds reduces to only 612 seconds using 128 threads.

representing our three versions of EquiTruss implementation. In

Figure 9a, we observe 70% parallel efficiency for Aff. EquiTruss
and 73% parallel efficiency for C-Opt. EquiTruss using 2 threads for

the Orkut network. For the same network, those corresponding

parallel efficiencies become 22% and 27%, respectively, using 64

threads, 14% and 17%, respectively, using 128 threads. The utilization

of 128 threads in our diverse EquiTruss versions showcases the

potential for even greater scalability when employing a shared-

memory system with a higher number of available threads.

5 OTHER RELATEDWORK
A few early studies [15, 30] on clique-based overlapping commu-

nity search are based on the clique percolation method where after

finding k-cliques, all adjacent k-cliques (sharing 𝑘 − 1 nodes) are
merged. Zhang et al. [51] propose clique percolation clustering

to detect overlapping communities in PPI networks. Kumpula et

al. [25] propose a clique-based approach for both weighted and

unweighted graphs. All these strategies are too restrictive on the

clique size. Maity et al. [28] extend the work [30] for the com-

plete graph and inherit the limitation as well. Community search

strategies [38, 48] depending on maximal clique suffer from com-

putational intractability. K-core based local community search tech-

niques [5, 49] optimize the metrics such as density, modularity, or

conductance but fail to avoid non-relevant vertices, and cannot

detect overlapping membership communities. Online community

search based on a community model named 𝛼-adjacency-𝛾-quasi-k-

clique is proposed by Cui et al. [13] where the formulation has been

Fast Parallel Index Construction for Efficient K-truss-based Local Community Detection in Large Graphs ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

 0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff.

T
im

e
 (

se
c)

Number of Threads

SpNode
SpEdge

SmGraph

8655

4371

2093

976

897

897

1942

864
407

219

227
227

128-Thread32-Thread8-Thread1-Thread

(a) Orkut

 0

 100

 200

 300

 400
 500

 600

 700

 800

 900

1k

1.1k
1.2k

1.3k

1.4k

1.5k

Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff. Base. Opt. Aff.

T
im

e
 (

se
c)

Number of Threads

SpNode
SpEdge

SmGraph

1393

696

453

157

155

155

302

140 86

38

41
41

128-Thread32-Thread8-Thread1-Thread

(b) LiveJournal
Figure 8: Timing breakdown of the major compute kernels (SpNode, SpEdge, SmGraph). The reduction in execution time for
those kernels is presented for different numbers of threads (1, 8, 32, and 128). The SpNode time reduces from 2093 seconds in 1

thread to 407 seconds in 8 threads, then to 127 seconds in 32 threads, and finally to 60 seconds in 128 threads for the Afforest
EquiTruss for Orkut network (Fig. 8a). Similarly, the SpNode time reduces from 696 seconds in 1 thread to 140 seconds in 8

threads, then to 42 seconds in 32 threads, and finally to 16 seconds in 128 threads for the C-Opt. EquiTruss for LiveJournal
network (Fig. 8b).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(a) Orkut

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(b) LiveJournal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 4 8 16 32 64 128

P
a
ra

ll
e
l
E
ff
ic

ie
n
cy

 (
%

)

No. of Threads

Baseline EquiTruss
C-Optimal EquiTruss

Afforest EquiTruss

(c) YouTube
Figure 9: Illustrating parallel efficiency using 3 different designs of the parallel EquiTruss for 3 different networks. For instance,
the parallel efficiencies are 38.89%, 37.66%, and 32%, respectively, for baseline EquiTruss, C-Opt. EquiTruss, and Afforest EquiTruss
for Orkut network while using 32 threads (Figure 9a).

found to be NP-hard [23] and the approximation proposed [13] has

non-promising solution quality. The truss-based community search

called TCP-Index [23] maintains trussness information into groups

of tree-structured indexes called maximum spanning tree (MST).

The limitations of TCP-Index are, the constituent edges of a graph

𝐺 have to be maintained redundantly in multiple MSTs and during

the community search phase, a costly truss reconstruction phase

needs to be performed. The work in [1] avoids such limitations

by maintaining an edge in a supernode structure, but is limited in

scalability for the algorithm’s sequential nature.

6 CONCLUSION
Designing parallel algorithms for local community discovery is

not as well-explored as global community discovery. There are

existing studies that discuss the problem of constructing commu-

nity subgraphs using higher-order graph primitives: cliques, quasi
clique, or k-core. An alternative approach, k-truss decomposition,

addresses the issues of computational intractability or lack of cohe-

siveness which are inherent in those other approaches. Fueled by

the promising aspect of cohesiveness in k-triangle-connected sub-

graph structures, we combine it with the state-of-the-art parallel

connected component approaches for our formulation of paral-

lel EquiTruss in shared-memory settings. Our parallel EquiTruss
algorithm scales well to large systems and on large datasets. The

algorithm demonstrates up to 55× speedup while processing billion-
size graphs on 128 physical cores of NERSC Perlmutter compute

node with 512GB of memory.

ACKNOWLEDGMENTS
This work has been partially supported by National Science Foun-

dation (NSF) under Award Number 2323533 and by the U.S. Depart-

ment of Energy, Office of Science, Advanced Scientific Computing

Research under Award Number DE-AC02-05CH11231. We express

our gratitude to Professor Esra Akbas for providing us with Equi-
Truss Java implementation.

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-Based Community Search: A Truss-

Equivalence Based Indexing Approach. Proc. VLDB Endow. 10, 11 (aug 2017),

1298–1309. https://doi.org/10.14778/3137628.3137640

[2] Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S.

Mailthody, Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu. 2019. Update on

k-truss Decomposition on GPU. In 2019 IEEE High Performance Extreme Comput-
ing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2019.8916285

[3] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. 2019. Fast parallel

algorithms for counting and listing triangles in big graphs. ACM Transactions on
Knowledge Discovery from Data (TKDD) 14, 1 (2019), 1–34.

[4] Seung-Hee Bae, Daniel Halperin, Jevin West, Martin Rosvall, and Bill Howe. 2013.

Scalable Flow-Based Community Detection for Large-Scale Network Analysis.

In 2013 IEEE 13th International Conference on Data Mining Workshops. 303–310.
https://doi.org/10.1109/ICDMW.2013.138

[5] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco Gullo. 2015.

Efficient and effective community search. Data Mining and Knowledge Discovery
29, 5 (01 Sep 2015), 1406–1433. https://doi.org/10.1007/s10618-015-0422-1

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

Breadth-First Search. In SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. 1–10. https:

//doi.org/10.1109/SC.2012.50

[7] Scott Beamer, Krste Asanović, and David Patterson. 2017. The GAP Benchmark

Suite. arXiv:1508.03619 [cs.DC]

https://doi.org/10.14778/3137628.3137640
https://doi.org/10.1109/HPEC.2019.8916285
https://doi.org/10.1109/ICDMW.2013.138
https://doi.org/10.1007/s10618-015-0422-1
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/SC.2012.50
https://arxiv.org/abs/1508.03619

ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Faysal, Bremer, Chan, Shalf, and Arifuzzaman

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (Oct 2008), P10008. https:

//doi.org/10.1088/1742-5468/2008/10/p10008

[9] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: Finding All Cliques of an

Undirected Graph. Commun. ACM 16, 9 (sep 1973), 575–577. https://doi.org/10.

1145/362342.362367

[10] Pei-Ling Chen, Chung-Kuang Chou, and Ming-Syan Chen. 2014. Distributed

algorithms for k-truss decomposition. In 2014 IEEE International Conference on
Big Data (Big Data). 471–480. https://doi.org/10.1109/BigData.2014.7004264

[11] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16, 3.1 (2008).
[12] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

Search of Overlapping Communities. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 277–288.

https://doi.org/10.1145/2463676.2463722

[13] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local Search

of Communities in Large Graphs. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIG-
MOD ’14). Association for Computing Machinery, New York, NY, USA, 991–1002.

https://doi.org/10.1145/2588555.2612179

[14] Timothy A. Davis. 2018. Graph algorithms via SuiteSparse: GraphBLAS: tri-

angle counting and K-truss. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). 1–6. https://doi.org/10.1109/HPEC.2018.8547538

[15] Imre Derényi, Gergely Palla, and Tamás Vicsek. 2005. Clique Percolation in

Random Networks. Phys. Rev. Lett. 94 (Apr 2005), 160202. Issue 16. https:

//doi.org/10.1103/PhysRevLett.94.160202

[16] Zhihui Du, Joseph Patchett, Oliver Alvarado Rodriguez, and David A. Bader.

[n. d.]. In The 9th Annual Chapel Implementers and Users Workshop (CHIUW).
[17] Mathematics Stack Exchange. [n. d.]. Number of triangles in a graph based on

number of edges. https://math.stackexchange.com/questions/823481/number-

of-triangles-in-a-graph-based-on-number-of-edges

[18] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman. 2019. Distributed community

detection in large networks using an information-theoretic approach. In 2019
IEEE International Conference on Big Data (Big Data). IEEE, 4773–4782.

[19] Md Abdul M Faysal, Shaikh Arifuzzaman, Cy Chan, Maximilian Bremer, Doru

Popovici, and John Shalf. 2021. HyPC-Map: A Hybrid Parallel Community

Detection Algorithm Using Information-Theoretic Approach. In 2021 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–8.

[20] Wafaa M. A. Habib, Hoda M. O. Mokhtar, and Mohamed E. El-Sharkawi. 2022.

Discovering top-weighted k-truss communities in large graphs. Journal of Big
Data 9, 1 (03 Apr 2022), 36. https://doi.org/10.1186/s40537-022-00588-1

[21] Yujie Han and Robert A. Wagner. 1990. An Efficient and Fast Parallel-Connected

Component Algorithm. J. ACM 37, 3 (jul 1990), 626–642. https://doi.org/10.1145/

79147.214077

[22] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-Truss Community in Large and Dynamic Graphs. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,

1311–1322. https://doi.org/10.1145/2588555.2610495

[23] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-Truss Community in Large and Dynamic Graphs. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,

1311–1322. https://doi.org/10.1145/2588555.2610495

[24] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-truss decomposition on

multicore systems. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC). 1–7. https://doi.org/10.1109/HPEC.2017.8091052

[25] Jussi M. Kumpula, Mikko Kivelä, Kimmo Kaski, and Jari Saramäki. 2008. Se-

quential algorithm for fast clique percolation. Physical Review E 78, 2 (aug 2008).

https://doi.org/10.1103/physreve.78.026109

[26] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[27] R. Duncan Luce and Albert D. Perry. 1949. A method of matrix analysis of group

structure. Psychometrika 14, 2 (01 Jun 1949), 95–116. https://doi.org/10.1007/

BF02289146

[28] Suman Maity and Santanu Rath. 2014. Extended Clique percolation method

to detect overlapping community structure. 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI) (2014), 31–37.

[29] M. E. J. Newman. 2013. Spectral methods for community detection and graph

partitioning. Physical Review E 88, 4 (Oct 2013). https://doi.org/10.1103/physreve.

88.042822

[30] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

Nature 435, 7043 (01 Jun 2005), 814–818. https://doi.org/10.1038/nature03607

[31] Roger Pearce and Geoffrey Sanders. 2018. K-truss decomposition for Scale-Free

Graphs at Scale in Distributed Memory. In 2018 IEEE High Performance extreme

Computing Conference (HPEC). 1–6. https://doi.org/10.1109/HPEC.2018.8547572

[32] Martin Rosvall and Carl T Bergstrom. 2008. Maps of random walks on complex

networks reveal community structure. Proceedings of the National Academy
of Sciences 105, 4 (2008), 1118–1123. https://doi.org/10.1073/pnas.0706851105

arXiv:https://www.pnas.org/content/105/4/1118.full.pdf

[33] Piyush Sao, Oded Green, Chirag Jain, and Richard Vuduc. 2016. A Self-Correcting

Connected Components Algorithm. In Proceedings of the ACM Workshop on
Fault-Tolerance for HPC at Extreme Scale (Kyoto, Japan) (FTXS ’16). Association
for Computing Machinery, New York, NY, USA, 9–16. https://doi.org/10.1145/

2909428.2909435

[34] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V. Çatalyürek. 2016. Incremental K-Core Decomposition: Algorithms and

Evaluation. The VLDB Journal 25, 3 (jun 2016), 425–447. https://doi.org/10.1007/

s00778-016-0423-8

[35] Naw Safrin Sattar and Shaikh Arifuzzaman. 2019. Overcoming mpi communi-

cation overhead for distributed community detection. In Software Challenges to
Exascale Computing: Second Workshop, SCEC 2018, Delhi, India, December 13-14,
2018, Proceedings 2. Springer Singapore, 77–90.

[36] Naw Safrin Sattar and Shaikh Arifuzzaman. 2022. Scalable distributed Louvain al-

gorithm for community detection in large graphs. The Journal of Supercomputing
78, 7 (2022), 10275–10309.

[37] Thomas Schank and Dorothea Wagner. 2005. Finding, Counting and Listing

All Triangles in Large Graphs, an Experimental Study. In Experimental and Effi-
cient Algorithms, Sotiris E. Nikoletseas (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 606–609.

[38] Hua-Wei Shen, Xue-Qi Cheng, and Jia-Feng Guo. 2009. Quantifying and iden-

tifying the overlapping community structure in networks. Journal of Statis-
tical Mechanics: Theory and Experiment 2009, 07 (jul 2009), P07042. https:

//doi.org/10.1088/1742-5468/2009/07/p07042

[39] Yossi Shiloach andUzi Vishkin. 1982. AnO(log n) Parallel Connectivity Algorithm.

J. Algorithms 3 (1982), 57–67.
[40] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS

and Coloring-Based Parallel Algorithms for Strongly Connected Components

and Related Problems. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. 550–559. https://doi.org/10.1109/IPDPS.2014.64

[41] Shaden Smith, Xing Liu, Nesreen K. Ahmed, Ancy Sarah Tom, Fabrizio Petrini,

and George Karypis. 2017. Truss decomposition on shared-memory parallel

systems. In 2017 IEEE High Performance Extreme Computing Conference (HPEC).
1–6. https://doi.org/10.1109/HPEC.2017.8091049

[42] Mauro Sozio and Aristides Gionis. 2010. The Community-Search Problem and

How to Plan a Successful Cocktail Party. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Washington,

DC, USA) (KDD ’10). Association for Computing Machinery, New York, NY, USA,

939–948. https://doi.org/10.1145/1835804.1835923

[43] Michael Sutton, Tal Ben-Nun, and Amnon Barak. 2018. Optimizing Parallel Graph

Connectivity Computation via Subgraph Sampling. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 12–21. https://doi.org/10.

1109/IPDPS.2018.00012

[44] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the Densest Subgraph: Extracting Optimal

Quasi-Cliques with Quality Guarantees. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Chicago,

Illinois, USA) (KDD ’13). Association for Computing Machinery, New York, NY,

USA, 104–112. https://doi.org/10.1145/2487575.2487645

[45] JiaWang and James Cheng. 2012. Truss Decomposition inMassive Networks. Proc.
VLDB Endow. 5, 9 (may 2012), 812–823. https://doi.org/10.14778/2311906.2311909

[46] Runze Wang, Linchen Yu, Qinggang Wang, Jie Xin, and Long Zheng. 2021. Pro-

ductive High-Performance k-Truss Decomposition on GPU Using Linear Alge-

bra. In 2021 IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
https://doi.org/10.1109/HPEC49654.2021.9622792

[47] Jian Wu, Alison Goshulak, Venkatesh Srinivasan, and Alex Thomo. 2018. K-Truss

Decomposition of Large Networks on a Single Consumer-Grade Machine. In 2018
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). 873–880. https://doi.org/10.1109/ASONAM.2018.8508642

[48] Peng Wu and Li Pan. 2014. Detecting highly overlapping community structure

based on Maximal Clique Networks. In 2014 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM 2014). 196–199.
https://doi.org/10.1109/ASONAM.2014.6921582

[49] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust Local Community

Detection: On Free Rider Effect and Its Elimination. Proc. VLDB Endow. 8, 7 (feb
2015), 798–809. https://doi.org/10.14778/2752939.2752948

[50] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. 2014. Pregel

Algorithms for Graph Connectivity Problems with Performance Guarantees.

Proc. VLDB Endow. 7, 14 (oct 2014), 1821–1832. https://doi.org/10.14778/2733085.

2733089

[51] Shihua Zhang, Xuemei Ning, and Xiang-Sun Zhang. 2006. Identification of

functional modules in a PPI network by clique percolation clustering. Comput
Biol Chem 30, 6 (Nov. 2006), 445–451.

https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/362342.362367
https://doi.org/10.1109/BigData.2014.7004264
https://doi.org/10.1145/2463676.2463722
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1109/HPEC.2018.8547538
https://doi.org/10.1103/PhysRevLett.94.160202
https://doi.org/10.1103/PhysRevLett.94.160202
https://math.stackexchange.com/questions/823481/number-of-triangles-in-a-graph-based-on-number-of-edges
https://math.stackexchange.com/questions/823481/number-of-triangles-in-a-graph-based-on-number-of-edges
https://doi.org/10.1186/s40537-022-00588-1
https://doi.org/10.1145/79147.214077
https://doi.org/10.1145/79147.214077
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1109/HPEC.2017.8091052
https://doi.org/10.1103/physreve.78.026109
http://snap.stanford.edu/data
https://doi.org/10.1007/BF02289146
https://doi.org/10.1007/BF02289146
https://doi.org/10.1103/physreve.88.042822
https://doi.org/10.1103/physreve.88.042822
https://doi.org/10.1038/nature03607
https://doi.org/10.1109/HPEC.2018.8547572
https://doi.org/10.1073/pnas.0706851105
https://arxiv.org/abs/https://www.pnas.org/content/105/4/1118.full.pdf
https://doi.org/10.1145/2909428.2909435
https://doi.org/10.1145/2909428.2909435
https://doi.org/10.1007/s00778-016-0423-8
https://doi.org/10.1007/s00778-016-0423-8
https://doi.org/10.1088/1742-5468/2009/07/p07042
https://doi.org/10.1088/1742-5468/2009/07/p07042
https://doi.org/10.1109/IPDPS.2014.64
https://doi.org/10.1109/HPEC.2017.8091049
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1145/2487575.2487645
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1109/HPEC49654.2021.9622792
https://doi.org/10.1109/ASONAM.2018.8508642
https://doi.org/10.1109/ASONAM.2014.6921582
https://doi.org/10.14778/2752939.2752948
https://doi.org/10.14778/2733085.2733089
https://doi.org/10.14778/2733085.2733089

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Index Construction Method

	3 Methodology
	3.1 Overview of the parallel algorithm
	3.2 Algorithm Complexity Analysis
	3.3 Optimization of Compute Kernel

	4 Performance Evaluation
	4.1 Experimental Settings
	4.2 Effect of Compute Kernel Optimization
	4.3 Performance Analysis

	5 Other Related Work
	6 Conclusion
	Acknowledgments
	References

